
 

Technical Note 1

Amphipols are a new class of surfactants that serve as stabilizers of membrane proteins in 

aqueous solutions. Amphipols can substitute traditional detergents used to extract membrane 

proteins, keeping them soluble in detergent

biochemically(1-3).  Amphipol A8-35 is the most thoroughly characterized amphipol and is 

becoming widely used for membrane protein re

polyacrylate chain onto which octylamine and isopropyl

(Figure 1 A). Amphipol A8-35 is highly water soluble (>

strength of the solutions)(4, 5). The high solubility is due to the anion

molecule) carried by the carboxylate groups

molecules is 9-10 kDa(1, 4, 5). In aqueous solutions (pH

into globular particles, each comprising ~4 molecules, with an average mass of ~40 kDa and a 

Stokes radius of ~3.15 nm (Figure 1B)

be negligible under most circumstances

Figure 1A                             

Due to its amphipathic character, Amphipol A8

proteins by adsorbing onto their hydrophobic transmembrane surface, stabilizing their native 

structure and preserving their functionality

Applications 

Although its detergency is too weak to effectively extract and sol

proteins [for some exceptions, see ref. 

replace the detergent after the solubilization step and

native state in detergent-free solutions [

(Figure 3)]. To date, amphipols have been used to trap ~30 different types of membrane
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Amphipol A8-35 is able to “trap” solubilized membrane 

proteins by adsorbing onto their hydrophobic transmembrane surface, stabilizing their native 

preserving their functionality(2, 3) (Figure 2).  

cy is too weak to effectively extract and solubilize most membrane 

for some exceptions, see ref. 2], Amphipol A8-35 has been very successfully used to 

replace the detergent after the solubilization step and handle the extracted proteins in their 

free solutions [for an example of trapping procedure, see ref.
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Table 1. Applications of Amphipol A8-35 to membrane protein studies.  

  Application             Benefits Example of studies References 

 Stabilization Reducing inactivation by the detergent and 
preserving membrane protein native 
structure.  

cytochrome b6f complex 
bacteriorhodopsin 
Ca2+-ATPase 
GPCRs 

(1-3, 6, 10, 12, 14) 

Functional studies Reducing inactivation by the detergent and 
preserving membrane protein native structure 
and function. Avoiding perturbations of the 
latter by detergents. In the vast majority of 
cases, trapping by Amphipol A8-35 has no 
effect on ligand/substrate binding. 

Ca2+-ATPase 
bacteriorhodopsin 
nicotinic acetylcholine 
receptor 
GPCRs  
 

(3, 6, 7, 10, 12, 

14, 15) 

Folding/Refolding Amphipol A8-35 is a mild surfactant which 
provides a favorable environment for proteins 
to fold or refold from denatured state.  

GPCRs 
OmpA and FomA 
bacteriorhodopsin 
 
 

(12, 16) 

NMR Maintaining the solubilized membrane protein 
soluble without detergent, thus stabilizing the 
native structure. Note, however, that mem-
brane protein/Amphipol A8-35 complexes 
cannot be handled at acidic pH. Addition of 
EDTA improves the spectra. 

OmpX 
transmembrane β-barrel of 
OmpA 

(8, 11, 17) 

Electron microscopy Stabilizing native structure. Mitochondrial 
Complex I/Amphipol A8-35 particles were 
observed to spread better than 
Complex I/detergent ones in cryo-EM single-
particle experiments. 

mitochondrial Complex I 
bacteriorhodopsin 

(9, 10) 

Immobilization of 
membrane proteins 
onto solid supports 

Appropriate functionalization of Amphipol 
A8-35 turns it into a sort of double-faced tape 
that can be used to anchor amphipol-trapped 
membrane proteins onto solid surfaces such 
as chips or beads for ligand binding studies. 

nicotinic acetylcholine 
receptor 
bacteriorhodopsin 
cytochrome b6f complex 
cytochrome bc1 complex 
detection of antibodies or 
toxin binding by SPR or 
fluorescence measurements 

(15) 

 

proteins, ranging in molecular weight from 5 kDa to > 1MDa(2, 3). Small proteins may bind 

~50 kDa of Amphipols(10), the mass of Amphipol bound increasing slowly with the size of the 

transmembrane region(2). The protein/Amphipol complexes thus formed are slightly larger than 

those formed with classical detergents (6, 8, 10, 13).  Although there can be exceptions(3, 6, 14)) in 

most cases, trapping by Amphipol A8-35 affects neither the binding of ligands or substrates nor 

the functionality of membrane proteins(3, 7, 10, 12, 15). A list of applications is given in Table 1.  

 



 

 

 

Figure 3. An example of trapping procedure. Figure reproduced from “NMR study of a membrane 
protein in detergent-free aqueous solution.” Proc. Natl. Acad. Sci. USA. 2005, 102, 8893-8898,  
Zoonens, M., Catoire, L. J., Giusti, F. & Popot, J.-L. Copyright (2005) National Academy of 
Sciences, U.S.A.  

Anatrace Offering 

Anatrace is proud to be the exclusive manufacturer and supplier of Amphipol A8-35. Anatrace 
offers Amphipol A8-35 in three packaging sizes: 50 mg, 100 mg and 500 mg.  

AP835   Amphipol A8-35  ANAGRADE 

 <MW> = 9-10 kDa (Amphipols are intrinsically polydisperse) 
 Purity: Conforms to HPLC standard 
 Appearance: white powder 
 Solubility: >200g per liter in water 
 

Storage and Handling 

Amphipol A8-35 can be stored at room temperature in tightly sealed containers 
Stability: 1 year at room temperature 
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