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Abstract

In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil
apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell
interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was
cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were
interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of
DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and
compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for
immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering
DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells.
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Introduction

Mammalian thrombospondins are a group of matricellular

proteins of complex spatial structure, which mediate a wide range

of intercellular activities, and participate in cell-matrix interac-

tions. This family includes five proteins, divided into two

subfamilies, which possess different roles and tissue expression

[1]. Group A, consisting of thrombospondins TSP-1 and TSP-2 in

humans, also exists in invertebrates, and appeared prior to the

development of the clotting and fibrinolytic systems of proteins,

indicating their essentiality [2,3].

TSP-1, the prototype thrombospondin, is a calcium-binding

protein that plays an important role in the cellular response to

various growth factors, cytokines, and inflammatory mediators

[4,5]. It controls proliferation, migration, and apoptosis in a

variety of conditions, such as wound healing, inflammation, and

neoplasia [2], through a large number of domains interacting with

distinct receptors. However, there is a degree of overlap in its

effects, which are mediated through different domains. Therefore,

different or even opposing influences of the same protein may

occur under certain circumstances, depending on the set of

receptors expressed by the target cell [6].

In our previous study, we have found that TSP-1 is

synthesized de novo upon monocyte and neutrophil apoptosis,

leading to a phagocytic and tolerizing state of dendritic cells

(DC), even prior to DC-apoptotic cell interaction [7]. Interest-

ingly, we were able to show that heparin binding domain

(HBD), the N-terminal portion of TSP-1, was cleaved and

secreted simultaneously in a caspase- and serine protease-

dependent manner.

In the current study we were interested to examine the role of

HBD in the clearance of apoptotic cells, and whether the

phagocytic and tolerizing state of DCs is mediated by the HBD

itself, or whether the entire TSP-1 is needed. Therefore, we have

cloned the human HBD, and compared its interactions with DC to

those with TSP-1.

Materials and Methods

Media and Reagents
Dendritic cell culture medium consisted of RPMI 1640 with

1% L-glutamine, 1% penicillin/streptomycin (Biological In-

dustries, Kibbutz Beit-Haemek, Israel), 1% autologous human

plasma, and recombinant human cytokines GMCSF and IL-4

(R&D Systems, Minneapolis, MN or PeproTech, London,

UK).

Ficoll-Paque was purchased from Amersham Pharmacia

Biotech (Piscataway, NJ).
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Mouse-anti-Human HLA-DR-FITC was obtained from Becton

Dickinson (Franklin Lakes, NJ). Mouse-anti-human CD86-FITC

and isotype controls were from Dako Cytomation A/S (Glostrup,

Denmark). Green fluorescent latex beads (L-4655) and LPS were

obtained from Sigma-Aldrich (St. Louis, MO). TSP-1 was

obtained from Sigma-Aldrich and Protein Sciences (Meriden,

CT). 1,19-dioctadecyl-3,3,39,39-tetramethyl-indocarbocyanineper-

chlorate (DiI) was obtained from Molecular Probes (Eugene, OR).

Recombinant heparin binding domain [8] (rHBD2) was kindly

provided by Prof. Jack Lawler, Department of Pathology, Harvard

Medical School, Boston, MA.

Protein Identification
SDS-PAGE. Gradient 4% to 20% polyacrylamide-SDS gels and

SDS buffer were prepared according to the Laemmli method. The

molecular mass of the protein bands was determined by means of a

Precision Plus Protein Standards Kit (Bio-Rad Laboratories,

Hercules, CA). Proteins were visualized using a silver-staining kit

(Amersham Pharmacia Biotech) or Bio-Safe Coomassie (Bio-Rad),

according to the manufacturer’s instructions. Gel images were

acquired using a Umax Power Look III scanner (Umax Systems,

Willich, Germany).

Mass spectrometry of HBD and rHBD1 was performed using a

Micromass Q-Tof system, equipped with a NanoFlow Probe Tip

Type F (Micromass UK, Manchester, UK). The extracted peptide

solution was collected in a borosilicate capillary tip (Protana,

Odense, Denmark) and subjected to ESI at a flow rate of 10 nL/

min. The MS spectra were analyzed with MicroMass Protein

Lynx software. Protein identification was conducted using the MS-

FIT proteomic tool from the Matrix-Science website (http://www.

matrixscience.com). For rHBD1 identification and sequence

verification, samples from selected FPLC fractions were separated

using 12% SDS-PAGE gel. Proteins were then transferred to a

nitro-cellulose membrane. The rHBD band was traced using

polyclonal antibody directed to the N-terminal 20 amino-acid

sequence of thrombospondin-1 (clone N-20, Santa-Cruz Biotech-

nology, Santa Cruz, CA) and donkey anti-goat IgG HRP

(Promega, Madison, WI) followed by ECL reaction (Biological

Industries).

Cloning
Human throbospondin-1 N terminal c-DNA (Pubmed citation,

accession No. NM_003246) containing HBD was purchased from

RZPD (Berlin, Germany).

Primers, forward GGGAATTCCATATGAACCGCATTC-

CAGAGTCTGGCGG and reverse TGAATTATAAGCTTA-

GAGGACACTGGTAGAGCTGGAGC were purchased from

Syntezza (Jerusalem, Israel). They were designed to exclude a 662

base-pair nucleotide sequence and included restriction sites to fit a

pHis1 parallel bacterial vector. PCR product was then purified by

gel extraction and a silica membrane containing column

purification (Intron Biotechnology, Gyeonggi-do, Korea). Restric-

tion reactions were preformed using Nde-I and Hind-III

restriction enzymes (New England Biolabs, Ipswich, MA) followed

by ligation reaction (Takara Bio, Shiga, Japan) to pHis parallel

bacterial vector containing ampicillin resistance marker (Novagen,

EMD Chemicals Inc. Darmstadt, Germany). Constructs of pHis1

parallel bacterial vector containing HBD inserts were transformed

into TOP-10 competent E. coli (Kindly provided by Dr. P

Sheffield from Dr. Z Derewenda, UVA, based on pET 22,

Invitrogen, Carlsbad, CA).

Ampicillin containing Luria Broth (LB)-agar plates were used

to isolate construct containing bacteria, from which a few were

screened to identify insert containing plasmids using a mini-

DNA purification kit (Intron Biotechnology), followed by

diagnostic restriction reactions. Insert-containing constructs

were then transformed to Origami B expressing bacteria.

Origami B strain, transformed with pHis1 empty vector was

used for control.

Expression and Purification of rHBD
1.5 L of fresh LB medium containing ampicillin was inoculated

with 50 ml of starter culture, incubated at 37uC to A600 = 0.6, and

then at 22uC for 30 min. Protein expression was induced by the

addition of 0.1 mM of isopropyl-b-D-thiogalactopyranoside

(IPTG) to the culture media, and incubation overnight at 17uC.

Cells were collected by centrifugation and stored at 270uC. For

lysis, cell pellets were thawed on ice and suspended in buffer A

(0.1 M NaCl, 20 mM Tris–HCl buffer pH 8.0); supplemented

with 10 mM MgCl2, PMSF (1 mM), lysozyme (0.2 mg/ml), and

DNaseA (50 ug/ml); and disrupted mechanically using micro-

fluidizer (model M-110 EHIS; Microfluidics Corp., Newton, MA).

The soluble and insoluble phases were separated by centrifugation

(20,000 g for 20 min at 4uC). Chromatography was performed

using the AKTA Explorer FPLC system (Amersham Biosciences,

Piscataway, NJ). Supernatant was loaded on a buffer A pre-

equilibrated Q-Sepharose column (Amersham Pharmacia) in

tandem with a buffer A pre-equilibrated heparin-agarose column

(Amersham Pharmacia) and extensively washed. Proteins were

then eluted from the heparin-agarose column using a step gradient

of NaCl in buffer A. Protein fractions were pooled according to

their molecular weight pattern of SDS-PAGE separation and

concentrated using AMICON concentrator centrifugal devices

with molecular weight cutoff of 10,000 kDa. For further

purification, fractions were applied to a Sephacyl S100 column

(9662.6 cm) using an AKTA FPLC, and equilibrated with PBS

buffer. The protein was quantified using spectrophotometry at

280 nm, supplemented with 20% glycerol, and then aliquoted and

preserved at 280uC.

Western Blotting
Samples from selected FPLC fractions were treated with

sample-bufferX5, boiled at 95uC degrees for 5 minutes, and

analyzed through SDS-PAGE 12% separating gel (1.5 Tris HCl

pH 8.3, 40% acrylamide\bisacrylamide 1:19 Sigma Aldrich).

Proteins were then transferred to a nitro-cellulose membrane.

rHBD was traced using polyclonal goat IgG a-HBD N-20

(Santa Cruz Biotechnology) and donkey anti-goat IgG HRP

(Promega, Madison) followed by ECL reaction (Biological

Industries).

Generation of Monocyte-Derived Dendritic Cells
Immature monocyte-derived dendritic cells (iDCs) were gener-

ated from the CD14+ selected fraction of PBMCs and from blood

donors’ buffy coats. iDCs were isolated as described [9]. Briefly,

PBMCs were isolated using Ficoll and anti-CD14 magnetic beads

in order to isolate monocytes from PBMCs according to the

manufacturer’s instructions (Becton Dickinson). iDCs were placed

in wells at a concentration of 1.256106/1.5 ml culture media in

the presence of 1% autologous plasma, GMCSF, and IL-4. Every

2 days, 0.15 ml was removed and 0.25 ml of media containing

plasma, IL-4, and GMCSF, 500 U/ml, was added. On day 6,

iDCs were harvested, washed, and counted.

Induction and Detection of Monocyte Apoptosis
Monocytes were obtained from buffy coats, using CD14

magnetic beads (Beckton Dickinson) according to the manufac-

TSP-1 and Dendritic Cells

PLoS ONE | www.plosone.org 2 August 2009 | Volume 4 | Issue 8 | e6840



turer’s instructions. Cells were then stained with 5 mg/ml DiI in

RPMI and incubated on ice for 30 minutes. Serum withdrawal

apoptosis was used for the generation of apoptotic monocytes in

serum-free RPMI. Monocytes were plated at a concentration of

6.66106/ml in 35 mm diameter dishes for 12 hour incubation

at 37uC. Apoptosis was detected using Annexin V and

propidium iodide (PI) staining by flow cytometry as previously

described [7]. Confirmation of apoptosis was made by

hypodiploid PI staining and loss of mithochondrial membrane

potential.

Interaction of Apoptotic Cells with iDCs
Interaction was performed as we have described [7]. Briefly,

after harvesting iDCs, cells were replated in 96-well plate

(Corning, New York, NY) at a concentration of 2.56105 in

300 ml iDC culture medium. Serum withdrawal, DiI-labeled

apoptotic cells were offered to iDCs at a 1:4 iDCs:apoptotic

monocyte ratio for four hours of interaction. iDC uptake of

apoptotic monocytes was read using FACScanTM (Becton

Dickinson). iDC uptake of DiI-stained apoptotic monocytes was

evaluated by mean DiI staining of DC-SIGN-FITC positive DCs.

For DC maturation assays, unlabeled apoptotic monocytes were

offered to iDCs as described above, and after four hours of co-

incubation, LPS (10 mg\ml, Sigma-Aldrich) was added. The

expression of DR and CD86 was evaluated 20 hours later, using

flow cytometry.

Inhibition Assays
iDCs were exposed to several anti-HBD blocking antibodies at

day 6 as follows: anti-HBD (N-20, Santa Cruz Biotechnology),

anti-b1 integrin (CD29, Chemicon, Boronia Victoria, Australia),

and anti-CD91 alpha- and beta chain (American Diagnostica,

Stamford, CT). Cells were then washed, and apoptotic monocytes

stained with DiI were offered in the presence or absence of HBD.

iDC acquisition of DiI was measured by flow cytometry. iDCs

were separated from monocytes based on DC-SIGN-FITC

staining.

rHBD Binding Assays
iDCs were washed with RPMI and incubated for 15 minutes

on ice with 10 mg\ml rHBD. Cells were then washed and

incubated with anti-HBD (N-20, Santa Cruz Biotechnology),

followed by secondary antibody, FITC-conjugated donkey anti-

goat (Santa Cruz Biotechnology). Binding was evaluated using

flow cytometry.

Statistics
Statistical comparisons of mean data were performed using one-

way analysis of variance (ANOVA) and the Students t-test with

Bonferroni correction for multiple comparisons. The Students t-

test was also used to compare uptake, and to compare the

expression of surface molecules on DCs.

Results

Generation of Recombinant Heparin Binding Domain of
Human Thrombospondin-1

cDNA containing the desirable sequence was amplified using

polymerase chain reaction. The reaction utilizes a 662 base pair

sequence that encodes 221 amino-acids of HBD (residues 19–240),

including Cys-150 and Cys-214, which participate in intrachain

disulfide bond formation, and lack the leader peptide (residues 1–

18). PCR fragments were tested both through 1% agarose gel, in

which we had a clear solitary band representing the PCR product

located between 700 and 500 DNA 100 bp ladder, and

sequencing (The center for genomic technologies, Hebrew

University, Jerusalem).

pHis1 parallel bacterial vector ligated with HBD inserts and

transformed into Origami B-expressing bacteria strain. As control,

we used Origami B transformed with pHis1 empty vector.

Transformed bacteria were incubated in auto-induced media

(5052-ZYP) for primary investigation of protein expression.

Coomassie staining showed protein presence in Origami B

supernatant after sonication, but not in the control system. Protein

expression induction was performed overnight at 17uC with

100 mg\ml IPTG.

Protein was then purified using a heparin agarose bead column

followed by further purification via gel filtration.

Recombinant HBD was further purified through gel filtration.

The rHBD1 was verified through Mass spectrometry (The core

research facility, Hebrew University, Jerusalem, Israel). Protein

was than aliquoted and preserved at 280uC with 20% glycerol,

and SDS-PAGE analysis (Fig. 1). Protein was then aliquoted and

preserved at 280uC with 20% glycerol.

Isolated Recombinant Heparin Binding Domain of
Thrombospondin-1 Enhances Apoptotic Monocyte
Engulfment

To test the hypothesis that HBD interaction with iDCs leads

to a phagocytic state, expressed by enhanced engulfment

ability, we first added HBD to iDCs in order to verify binding.

As shown in Figure 2A, compared to isotype controls (mean

fluorescence 4.8), rHBD binds iDCs (mean fluorescence 6.7,

p,0.0003).

As we used TSP-1 concentrations similar to levels that were

found secreted upon monocyte apoptosis [7], we used equimolar

concentrations of rHBD in order to compare the effects of the

rHBD to those of TSP-1. As shown in Figure 2B and C, this

resulted in a dose-dependent increase in iDC engulfment of DiI-

stained apoptotic cells. As shown in Figure 2C, mean iDC

apoptotic cell acquisition was elevated in 51 and 84 percent when

0.4 and 1 mg\ml of HBD was added, respectively (three

experiments, p,0001). Mean apoptotic cell acquisition upon

addition of 4 mg\ml rHBD, (138 percent increase) was close to the

effect of TSP-1 (162 percent increase). iDC engulfment of

apoptotic monocytes was confirmed by fluorescent microscopy

(Figure 2D).

To verify whether HBD of different origins would have a similar

effect, we used rHBD from an alternative source (rHBD2, kindly

provided by Jack Lawler, Harvard Medical School, Boston, MA).

Comparison of the rHBDs suggested that both had a significant

effect, although rHBD that we generated (rHBD1) was slightly

more effective (Fig. 2C).

Finally, we wanted to see whether this pro-phagocytic effect is

expressed when other, nonspecific particles are offered, and we

offered green fluorescent beads to iDCs. As shown in Figure 2E,

green fluorescent bead uptake was augmented when iDCs were

exposed to rHBD.

CD29, CD91, or N20 Blockade Abrogates the HBD-
Dependent Engulfment Effect

HBD possesses several identified receptors. In complexes with

calreticulin (CRT), CD91 was shown to be involved in apoptotic

cells clearance [10,11]. CD29 (b1 integrin) is known as an HBD

TSP-1 and Dendritic Cells
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receptor that mediates neurite growth and adhesion of cells in

association with integrins a3, a4, or a5 (reviewed by Chen, et al.

[12]). This receptor has not been clearly shown to be involved in

apoptotic cell engulfment.

We conducted inhibition assays with antibodies specifically

directed against each of these three receptors to examine whether

they may mediate the HBD-dependent enhanced engulfment

capacity of DCs. Surprisingly, both monoclonal specific antibodies

resulted in a blockage of HBD influence, similar to that of the N-

20, an antibody directed against HBD (Fig. 3).

The Heparin Binding Domain of TSP-1, in Contrast to the
Intact TSP-1, Does Not Induce Immune Paralysis

To test the hypothesis that the isolated HBD could inhibit iDC

maturation as has been shown for TSP-1 [7], we incubated iDCs

with either 0.4 mg/ml rHBD, an equimolar concentration to that

of the TSP-1 secreted by apoptotic monocytes at 10 hours of

apoptosis, or with 2.0 mg/ml TSP-1, and examined the changes

in the iDC morphology and maturation profile using flow

cytometry.

Surprisingly, the expression of maturation-related molecules

MHC class II and CD86 was not inhibited by pre-incubation

with isolated rHBD, compared to the effect of TSP-1 (Fig. 4),

for a wide range of rHBD concentrations (Fig. 4B). In support

of this finding, we further found that pre-incubation with

rHBD did not influence the forward- and side-scatter features

of DCs, whether exposed or not exposed to LPS. Addition of

the whole TSP-1 resulted in a decrease in cell size along with

increased granularity (data not shown).

Discussion

Thrombospondin-1 controls proliferation, migration, and

apoptosis in a variety of conditions, including wound healing

and inflammation. The most important receptors identified to date

for the varying effects moderated by TSP-1 are CD91, syndecan-

1, and alpha3beta1 (a3b1) integrin for HBD; CD47 for the C

Figure 1. Cloning, expression and purification of the heparin binding domain (HBD) of thrombospondin-1. A. Fast protein liquid
chromatography (FPLC) of heparin-agarose purified rHBD. HBD constructs were transformed into competent E. coli, amplified, verified, and
extracted for expression in expressing bacteria (Origami B), as described in Materials and Methods. Bacteria were lysed, and the rHBD was separated
from the supernatant using FPLC equipped with a heparin-agarose column. The rHBD location was approximated using the FPLC fraction flow curve,
as shown (left). The black line represents protein content of fractions eluted from the column. The peak containing the rHBD is marked. The dark gray
line probably represents DNA remnants. SDS-PAGE served for rHBD identification. Clear, growing bands, located between 20–30 kDa, represent
eluted rHBD. MW = molecular weight. Light gray line represents gradient B (elution salt gradient). B. Gel filtration. In order to obtain highly purified
rHBD, FPLC protein-containing fractions were combined and separated using a molecular weight exclusion column. Protein content was determined
using fraction-curve and SDS-PAGE. Black line = rHBD elution curve; Dark and light gray lines represent nonprotein side products. SDS-PAGE indicates
the presence of a substantial amount of protein, located between 20–30 kDa. Control = rHBD; verified by mass spectrometry
doi:10.1371/journal.pone.0006840.g001
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Figure 2. The isolated heparin binding domain of thrombospondin-1 enhances the specific- and nonspecific engulfment capacity
of iDCs. A. rHBD binds immature dendritic cells. iDCs were washed twice with RPMI, and were either incubated for 15 min on ice with 10 mg/
ml rHBD or left untreated. Cells were then rewashed and stained with anti-HBD antibody (N20, Santa Cruz Biotechnology, Lot. F0804), fluorescence-
labeled secondary antibody, as described in Materials and Methods, or fluorescence-labeled isotype control (p,0.00034). B and C. rHBD enhances
apoptotic monocyte engulfment by iDCs. Apoptotic monocytes were stained with 5 mg/ml DiI and offered to iDCs, at a 4:1 ratio. A control
group of iDCs were not exposed to apoptotic monocytes. Acquisition of apoptotic cell-derived DiI by the DCs was measured after 8 h of interaction.
iDCs were separated from monocytes based on DC-SIGN-FITC staining. Results are representative of three experiments. B. Comparison between
the engulfment effect of rHBD and TSP-1 on DiI-stained apoptotic monocytes. Dot plot of DC-SIGN positive cells (iDCs) and DiI-stained
apoptotic monocytes. Mean fluorescence of DiI acquisition is indicated in the right upper quadrant. Pre-incubation of the iDCs with 0.4 mg/ml HBD
significantly enhanced apoptotic monocyte acquisition by iDCs; median fluorescence was 298 compared to 133 for iDCs exposed to apoptotic
monocytes without addition of rHBD. HBD, at 1.0 mg/ml, further enhanced iDC engulfment capacity with median fluorescence 410. The effect of TSP-
1, 2.0 mg/ml, is indicated for comparison, with median fluorescence 537. Results are representative of three experiments. See also Figure 2C. C.
Comparison between the effects of rHBD from different sources (rHBD1, black bars; rHBD2, grey bars) on iDC uptake of apoptotic
monocytes. Y axis represents the percentage increase in rHBD-dependent uptake of apoptotic monocytes by iDCs as measured by DiI fluorescence,
compared with baseline uptake when no rHBD is added. A dose-dependent augmentation of uptake is seen with the addition of rHBD from both
sources. Results are mean6SE of three experiments. D. Human monocyte-derived dendritic cell engulfing an apoptotic monocyte. Wide
field fluorescence microscopy image of a human monocyte-derived dendritic cell that has engulfed a DiI-stained apoptotic monocyte (red). DAPI
(blue) was used to demonstrate the nuclei, with an overlay of the phase contrast profile. Note the difference between the lightly fluorescent dendritic
cell nucleus and the condensed and highly fluorescent chromatin of the apoptotic monocyte nucleus. Original magnification, 10006. E. Isolated
HBD enhances latex bead engulfment by iDCs. Green fluorescent latex beads were offered to iDCs at a 16:1 ratio, in the presence or absence of
0–1 mg/ml isolated HBD or 2 mg/ml TSP-1. Median fluorescence was enhanced from 55.67 (average of two measurements) with no added HBD, to
81.33 in the presence of 0.4 mg/ml HBD, and 90.14 in the presence of 1 mg/ml HBD, indicating augmentation in phagocytic capacity of 46.08% and
61.9% respectively, following HBD exposure (p,0.001). This is compared with 98.38% augmentation of phagocytosis in the presence of 2 mg/ml TSP-
1. Data is representative of three experiments.
doi:10.1371/journal.pone.0006840.g002

TSP-1 and Dendritic Cells

PLoS ONE | www.plosone.org 5 August 2009 | Volume 4 | Issue 8 | e6840



terminal domain, CD36 HSPG and beta1 (b1) integrins for type I

repeats; and alpha v beta 3 (avb3) for type III repeats. Different

proteins in vertebrates and invertebrates include domains with

similar structure and function to those of HBD, as reviewed in

Adams and Lawler [2].

We showed earlier that TSP-1 induced a phagocytic and

tolerizing state for iDCs [7]. In this study we were interested to

examine the specific role that the isolated rHBD may play in this

interaction. Our interest is due not only to the importance of

understanding TSP-1 functions, but also because HBD is

discretely secreted from apoptotic monocytes [7] and platelets

[13]. For this purpose we have cloned and expressed recombinant

monomeric HBD (rHBD) using human throbospondin-1 N-

terminal domain c-DNA.

HBD, as part of TSP-1, was suggested to bind multiple

receptors, including syndecan-1, syndecan-4, perlecan, Decorin,

CD91 and its complex with calreticulin, VLDL-receptor, and

integrins a6b1, a4b1, anda 3b1, as reviewd by Elzie et al. [13].

Here we were able to show that rHBD by itself can make iDCs

better phagocytes of apoptotic cells. What could be the underlying

mechanism? According to the model suggested by Savill and

colleagues [14], TSP-1 may serve as a bridging molecule in the

engulfment of apoptotic cells. We have shown that TSP-1 alone,

without the presence of apoptotic cells, makes iDCs more

phagocytic [7], Thus, it is likely that this HBD effect is achieved

via signaling events following its binding. Using monoclonal

antibodies, we were able to show that this effect was abrogated by

inhibiting the action of CD29 and CD91, which are most likely

involved in the signaling cascade. CD29, an integrin family

member, is a membrane receptor involved in cell adhesion and

recognition for a variety of processes, including embryogenesis,

hemostasis, tissue repair, and immune response. CD29 was not

previously known to be involved in phagocytosis. Here we show

for the first time that CD29 may be required for HBD-dependent

engulfment activity.

Interestingly, and in contrast to the effect of HBD as part of

TSP-1, no inhibition of DC maturation by the rHBD was

documented in our system. In other words, whereas isolated HBD

mediates the phagocytic state it does not mediate the tolerizing

phenotype of DCs. This can be due to several reasons. The first is

that HBD is not required for DC maturation inhibition. In a

previous work performed by our group [7] we showed that

blocking antibodies directed against TSP-1 C-terminus and type 1

repeats (CD47, CD51 and CD36 respectively) inhibited up to 80%

of the TSP-1 tolerizing phenotype. Thus, the tolerance effect could

very well be mediated by interaction of the TSP-1 C terminus with

CD47 [15,16], or interaction of the type I repeats with CD36 [17].

Another possibility is that HBD plays a role in creating the

tolerizing phenotype, but only as a part of TSP-1, when a

signalosome is formed [7]. Indeed, some actions mediated by TSP-

I require simultaneous interactions in other regions of the

molecule [18] where intracellular crosstalks, mediated simulta-

neously through several receptors, are necessary. Our finding that

blockage with anti-HBD (N20, Santa Cruz) did inhibit develop-

ment of a tolerizing phenotype [7] supports this concept. An

additional explanation may be a two-step mechanism, for example

augmentation of apoptotic cell uptake that leads later to a more

pronounced tolerizing phenotype. Thus, HBD is essentially a

prophagocytic protein that enhances phagocytosis of apoptotic

cells when binding to an iDC. Binding of TSP-1 as well as

Annexin-1, phosphatidylserine, and probably additional mole-

cules, allows DC immune paralysis. Finally, it is possible that

trimeric HBD is needed for the full HBD effect, as it has been

shown that trimetric HBD may act differently from monomeric

HBD [19,20].

There was some difference in phagocytic efficiency in the

two rHBD samples. Our rHBD lacks the leader peptide (the

first 19 amino acids), which is present in the rHBD2. The rest

of the protein is completely identical. Both rHBD samples

significantly increased phagocytic state and did not alter

maturation, however activity was somewhat reduced in the

rHBD2 sample. It seems that the cause for this difference is

storage conditions, which preserve the HBD’s biological

activity. Indeed, we have found that storage of rHBD1 in

20% glycerol at 280uC protects the best biological activity,

whereas storage at 220uC in PBS, the storage regimen for the

rHBD2, activity was reduced (not shown).

In summary, we have shown that rHBD by itself is not

directly responsible for immune paralysis and tolerizing

phenotype of DCs, at least in the monomeric form, but has a

significant role in rendering DCs phagocytic. Indirectly, as a

part of TSP-1, or in its trimeric form, rHBD may influence

development of the tolerizing phenotype of DCs following

binding of TSP-1.
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Figure 3. HBD-dependent apoptotic monocyte engulfment
may be mediated through different receptors. Immature DCs
were pre-incubated with antibodies against CD29 or CD91, and were
then offered apoptotic monocytes in the presence of 0.4 mg/ml
recombinant HBD. HBD was also added to dendritic cells in the
presence of an antibody raised against the HBD (N20). Striking ($90%)
inhibition of HBD-dependent apoptotic monocyte uptake is seen upon
blocking HBD binding to either CD29 or CD91, compared with almost
complete blocking of the HBD effect with the addition of N20. The
effect of each blocking antibody on rHBD-dependent engulfment is
measured relative to the difference in engulfment between additions of
isotype control with 2 mg/ml HBD to that without HBD. Data is a
mean6SE of three experiments.
doi:10.1371/journal.pone.0006840.g003
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Figure 4. Effect of rHBD and TSP-1 on LPS-stimulated iDCs. A. Pre-incubation with HBD does not inhibit the expression of maturation-related
molecules DR (upper chart) and CD86 (lower chart) when iDCs are exposed to LPS, whereas pre-incubation with TSP-1 at equimolar concentration
inhibits their expression. Data is representative of three experiments. B. Compared to treatment with 10 ng/ml LPS, pre-incubation with different
concentrations of HBD (0.4 or 1.0 mg/ml) before exposure to LPS did not have significant influence on expression of either DR (upper chart) or CD86
(lower chart). TSP-1, on the other hand, resulted in a decreased expression of both molecules, similar to that of untreated iDCs. Results are expressed
as a percent of the expression of each molecule at the 10 ng/ml LPS treatment, and represent mean6SE of three experiments. Statistically significant
difference is marked (*).
doi:10.1371/journal.pone.0006840.g004
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