OptiTherm[™] Protein Thermal Stability Kit

Quick Start Guide

Dilvx Biotechnologies, LLC 815 First Ave Seattle WA 98104 USA www.dilyx.com info@dilyx.com Phone: 425-205-0588

© Dilvx Biotechnologies, LL

Protocol: Identify Formulations that Maximize the Thermal Stability of a Protein Sample

Materials

Kit

1 tube TFluor[™] Dye 1 OptiTherm Formulation Plate (96 x 150 uL)

- User-provided • ca. 100 uL purified protein solution (ca. 1 mg/mL)
 - temperature scanning fluorescence plate reader such as a Q-PCR instrument (BioRad Opticon[™], Stratagene Mx4000, Roche LightCycler® 480 quantitative PCR)
 - Q-PCR plate (preferably white)
 - plate seal

Protocol

OptiTherm Aug2012.v

- 1. Dilute 1uL of TFluor Dye with 100 uL water and pipette a 2 uL drop of this solution onto the side of each well in a Q-PCR plate
- 2. Pipette 1 uL protein sample into the opposite sides of all wells
- 3. Add 25 uL of each formulation from the OptiTherm Formulation Plate. This combines the protein with the dye in each well.
- 4. Seal the Q-PCR plate and spin (*i.e.* 5 min at 1000 rpm) to neatly collect all liquid in the center of the well
- Insert plate into temperature scanning fluorescence plate reader. 5. Run temperature scan (i.e. heating from 25°C to 90°C in 0.2°C steps equilibrating for 12 seconds for every step) while recording TFluor fluorescence at 570-580 nm (Excitation 460-490nm)
- 6. Analyze resulting fluorescence / temperature data and record the midpoint of thermal denaturation for each formulation. Compare thermal denaturation points and identify formulation that renders protein most temperature stable
- Variation: include known or putative small molecule ligands or cofactors (ATP, NAD/H, Zn2+ etc.) to protein buffer prior to analysis with the OptiTherm kit.

BioRad Opticon™ is a trademark of Bio-Rad Laboratories, Inc. Stratagene Mx4000™ is a trademark of Life Technologies Corporation Roche LightCycler® is a trademark of is a trademark of Roche Diagnostics Corporation

Note & Troubleshooting

We advise to carry out a simple test prior to conducting the OptiTherm experiment to dial in the proper protein concentration and to identify a suitable detection range. This can be done by setting up a single well using the amounts suggested in this protocol (using any standard buffer). Consult the manual of the temperature scanning fluorescence plate reader to adjust the fluorescence emission signal to less than 20% of the maximal readout. Increase amounts of protein and dye if fluorescence signal is too low, decrease protein and dve amounts if fluorescence signal is too low.

Protein TM OptiTherm^{Thermal} Stability Kit

Product Information

Content:

- 1 x 96 well **OptiTherm Reagent Plate**
- 1 tube TFluor[™] Dye
- · Quick Start Guide with OptiTherm Reagent Listing

Kit

10

11

12 13

14

15 16

21 22

23 24

25

26 1 27

28

29

30

31

32

33

34

35

39

40

41

42

43

44

45

46

47

48

D 12

CAPS

Store at 4[°]C. Caution: TFluor[™] Dye not yet fully tested (EU) WGK1 Combustible. Readily absorbed through skin. Target organ(s): Eyes, Skin. Hygroscopic. Product of USA. MSDS available www.dilyx.com/optitherm. For R&D use only. Not for drug, household or other uses.

Purpose

OptiTherm Protein Thermal Stability Kit

Systematic solution design and fluorescence-based stability assay for:

Thermal stabilization of protein samples

For updated instructions and additional information please check: www.dilyx.com/optitherm

One OptiTherm kit contains consumable materials to assay solution conditions for up to six (6) different protein samples.

Order Information

Order #: DLX-104-006 OptiTherm Protein Thermal Stability Kit Price: \$ 599 (inquire about volume discounts)

	www.d
Dilyx Biotechnologies, LLC	info@d
815 First Ave	າກາດສົກ
	Phone: 425-2
Seattle WA 98104 USA	Fax: 202-2

dilyx.com lilyx.com 205-0588 07-0398

			C	יקר	ti i ner	m Re	ag	er	τι	Isting				
	Well	Buffe	r#		Add	litive		We	ell	Buff	er [#]		Ad	ditive
#	Row Col		Conc unit	pН	NAME	Conc unit	#	Rov	N Col		Conc unit	pН	NAME	Conc unit
1	A 1	Glycine	100 mM	3.0			49		E 1	Glycine	50 mM	3.0	Na ₂ SO ₄	500 mM
2	A 2	Citric Acid	100 mM	3.2			50		E 2	Sodium Acetate	50 mM	4.5	Na ₂ SO ₄	500 mM
3	A 3	PIPPS	100 mM	3.7			51		E 3	Bis-Tris	50 mM	6.0	Na ₂ SO ₄	500 mM
4	A 4	Citric Acid	100 mM	4.0			52		E 4	MOPS	50 mM	7.0	Na ₂ SO ₄	500 mM
5	A 5	Sodium Acetate	100 mM	4.5			53		E 5	Imidazole	50 mM	8.0	Na ₂ SO ₄	500 mM
6	A 6	Na/K Phosphate	100 mM	5.0			54		E 6	CHES	50 mM	9.5	Na ₂ SO ₄	500 mM
7	Α7	Sodium Citrate	100 mM	5.5			55		E 7	Citric Acid	50 mM	3.2	Arg/Glu*	50 mM
8	A 8	Na/K Phosphate	100 mM	6.0			56		E 8	Na/K Phosphate	50 mM	5.0	Arg/Glu*	50 mM
9	A 9	Bis-Tris	100 mM	6.0			57		F 9	ADA	50 mM	6.5	Arg/Glu*	50 mM
0	Δ 10	MES	100 mM	6.2			58		F 10	HEPES	50 mM	7.5	Arg/Glu*	50 mM
1	Δ 11		100 mM	6.5			50		F 11	Tris	50 mM	8.5	Arg/Glu*	50 mM
2	A 11	Bis-Tris Propane	100 mM	6.5			60		F 12	CARS	50 mM	10.0	Arg/Glu*	50 mM
2	R 12		100 mM	7.0			61			Glycine	50 mM	2.0	Tween 20	1 % (\w/\v)
1	D 1 D 2	Animonium Acetate	100 mM	7.0			62			Sodium Acotato	50 mM	3.0 4 E	Tween 20	1 % (w/v)
4	D 2	IVIOPS	100 mivi	7.0			02			Soulum Acetate	50 milvi	4.5	Tween 20	1 % (W/V
.5	B 3	Na/K Phosphate	100 mivi	7.0			63			BIS-THS	50 mivi	5.0	Tween 20	1 % (W/V
.6	B 4	HEPES	100 mivi	7.5			64		F 4	MUPS	50 mivi	7.0	Tween 20	1 % (W/V
./	8.5	Iris	100 mM	7.5			65		+ 5	Imidazole	50 mM	8.0	Tween 20	1 % (w/v)
.8	B 6	EPPS	100 mM	8.0			66		F 6	CHES	50 mM	9.5	Tween 20	1 % (w/v)
.9	B 7	Imidazole	100 mM	8.0			67		F 7	Citric Acid	50 mM	3.2	Solubilisin™	100 % (w/v
20	B 8	Bicine	100 mM	8.5			68		F 8	Na/K Phosphate	50 mM	5.0	Solubilisin™	100 % (w/v
21	В9	Tris	100 mM	8.5			69		F 9	ADA	50 mM	6.5	Solubilisin™	100 % (w/v
22	B 10	CHES	100 mM	9.0			70		F 10	HEPES	50 mM	7.5	Solubilisin™	100 % (w/v)
23	B 11	CHES	100 mM	9.5			71		F 11	Tris	50 mM	8.5	Solubilisin™	100 % (w/v)
24	B 12	CAPS	100 mM	10.0			72		F 12	CAPS	50 mM	10.0	Solubilisin™	100 % (w/v)
25	C 1	Glycine	50 mM	3.0	NaCl	150 mM	73	(G 1	Glycine	50 mM	3.0	Glycerol	20 % (w/v)
26	C 2	Sodium Acetate	50 mM	4.5	NaCl	150 mM	74	(G 2	Sodium Acetate	50 mM	4.5	Glycerol	20 % (w/v)
27	С3	Bis-Tris	50 mM	6.0	NaCl	150 mM	75	(G 3	Bis-Tris	50 mM	6.0	Glycerol	20 % (w/v)
28	C 4	MOPS	50 mM	7.0	NaCl	150 mM	76	(G 4	MOPS	50 mM	7.0	Glycerol	20 % (w/v)
29	C 5	Imidazole	50 mM	8.0	NaCl	150 mM	77	(G 5	Imidazole	50 mM	8.0	Glycerol	20 % (w/v)
80	C 6	CHES	50 mM	9.5	NaCl	150 mM	78	(G 6	CHES	50 mM	9.5	Glycerol	20 % (w/v)
31	C 7	Citric Acid	50 mM	3.2	NaCl	500 mM	79	(G 7	Citric Acid	50 mM	3.2	Betaine	2 M
32	C 8	Na/K Phosphate	50 mM	5.0	NaCl	500 mM	80	(G 8	Na/K Phosphate	50 mM	5.0	Betaine	2 M
33	C 9	ADA	50 mM	6.5	NaCl	500 mM	81	(G 9	ADA	50 mM	6.5	Betaine	2 M
34	C 10	HEPES	50 mM	7.5	NaCl	500 mM	82	(G 10	HEPES	50 mM	7.5	Betaine	2 M
35	C 11	Tris	50 mM	8.5	NaCl	500 mM	83	(G 11	Tris	50 mM	8.5	Betaine	2 M
86	C 12	CAPS	50 mM	10.0	NaCl	500 mM	84	(G 12	CAPS	50 mM	10.0	Betaine	2 M
37	D 1	Glycine	50 mM	3.0	Trehalose	1.0 M	85	ł	Η1	H2O	100 %			
88	D 2	Sodium Acetate	50 mM	4.5	Trehalose	1.0 M	86	ł	H 2	H2O	100 %			
39	D 3	Bis-Tris	50 mM	6.0	Trehalose	1.0 M	87	ł	Н З					
0	D 4	MOPS	50 mM	7.0	Trehalose	1.0 M	88	ł	H 4				AmSulfate	3 M
1	D 5	Imidazole	50 mM	8.0	Trehalose	1.0 M	89	H	Н 5				Acetonitrile	80 % (v/v)
2	D 6	CHES	50 mM	9.5	Trehalose	1.0 M	90	ł	Н 6	PEG 1450	10 %		NaCl	50 mM
3	D 7	Citric Acid	50 mM	3.2	TMAO	500 mM	91	ł	Η 7				DDT	1 mM
4	D 8	Na/K Phosphate	50 mM	5.0	TMAO	500 mM	92	ł	8 H				DDT	5 mM
15	D 9	ADA	50 mM	6.5	TMAO	500 mM	93	ł	Н 9				DDT	15 mM
16	D 10	HEPES	50 mM	7.5	TMAO	500 mM	94	ł	H 10				BME	2.5 mM
17	D 11	Tris	50 mM	8.5	TMAO	500 mM	95	ł	H 11				BME	10 mM

TMAO, Trimethylamine N-Oxide: PIPPS, Piperazine-N, n'-Bis (3-Propanesulfonic Acid); MES, 2-(N-morpholino) ethanesulfonic acid; MOPS, 3-(N-morpholino) propanesulfonic acid; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Arg/Glu*: 50mM of each Arginine and Glutamate; DDT, DL-Dithiothreitol; BME, 2-Mercaptoethanol; Betaine, Trimethyl-Glycine; CAPS, N-cyclohexyl-3-aminopropanesulfonic acid: ADA, N-(2-Acetamido)iminodiacetic Acid: Tris, tris(hydroxymethyl)aminomethane: CHES, 2-(N-Cyclohexylamino)ethane Sulfonic Acid: EPPS, N-(2-hyroxyethyl)piperazine-N'-(3propanesulfonic acid). # pH values for buffers used only; * each amino acid is 50 mM © Dilvx Biotechnologies, LLC: Patent pending

96

H 12

BME

20 mM

500 mM

TMAO

50 mM 10.0