GE Healthcare

# Protein purification

Applications that meet your needs



You must deliver quality results, pure protein targets and publish findings—in time and on budget. While it is complex work, purification need never to be an obstacle for you. Better still, it offers you opportunities to gain real competitive advantages.

Here you'll find proven solutions to many of today's protein purification challenges. As well as an overview of the chromatography systems, services and quality assurances that we make available to support your science.

With nearly 50 years of experience and a wealth of knowledge in purifying proteins, the Protein Separations specialists at GE Healthcare are ready to help you gain real competitive advantages.

#### Contents

| Histidine-tagged protein purification                                          | 3   |
|--------------------------------------------------------------------------------|-----|
| Two-step purification of a high molecular weight histidine-tagged protein      | 4   |
| Scaling up a histidine-tagged protein purification procedure                   | 5   |
| Products for histidine-tagged protein purification                             | 6   |
|                                                                                |     |
| GST-tagged protein purification                                                | 7   |
| One-step purification and on-column cleavage of a GST-tagged protein           | 8   |
| Scaling up a GST-tagged protein purification procedure                         | 9   |
| Products for GST-tagged protein purification                                   | 10  |
|                                                                                |     |
| High throughput protein purification                                           | 11  |
| Optimizing protocols for automated multi-step purification                     |     |
| of histidine- and GST-tagged proteins                                          | 12  |
| Automated tag removal using ÄKTAxpress                                         | 13  |
| Products for high through protein purification                                 | 14  |
|                                                                                | 4.5 |
| Antibody purification                                                          | 15  |
| Purification of a mouse IgG <sub>1</sub> MAb from cell culture using Protein G | 16  |
| Monomer/dimer separation of a MAb                                              | 16  |
| Purification of humanized IgG <sub>4</sub> from cell culture using protein A   | 17  |
| Relative binding strengths of Protein G and Protein A                          | 17  |
| Products for antibody purification                                             | 18  |
| Augustani ang musiang                                                          | 10  |
| Analytical separations                                                         | 19  |
| RPC separation for peptide mapping at high pH                                  | 20  |
| Purity analysis of synthetic oligonucleotides                                  | 20  |
| Analysis of glycated and non-glycated hemoglobin A <sub>1c</sub>               | 21  |
| Products for analytical separations                                            | 22  |
| Purification of non-tagged proteins                                            | 23  |
| Rapid three-step purification of a labile, oxygen-sensitive enzyme             | 24  |
| Two-step purification of a native protein at optimized pH                      | 25  |
| Products for non-tagged protein purification                                   | 26  |
| roducts for hor tagged protein particular                                      | 20  |
| Refolding proteins from inclusion bodies                                       | 27  |
| One-step on-column refolding and purification                                  |     |
| of a histidine-tagged protein from <i>E. coli</i> inclusion bodies             | 28  |
| One-step on-column refolding and purification using a dual gradient            | 29  |
| Representative chromatographic refolding processes                             | 29  |
| Products for on-column refolding                                               | 30  |
|                                                                                |     |
| Sample preparation                                                             | 31  |
| Removal of high abundance proteins from human serum                            | 32  |
| Removal of trypsin-like serine proteases from human plasma                     | 33  |
| Small scale-up using buffer exchange                                           | 33  |
| Desalting using cross-flow filtration for 100-300 ml sample volumes            | 33  |
| Products for sample preparation                                                | 34  |
|                                                                                |     |
| Chromatography systems                                                         | 35  |
| Services, support and quality                                                  | 36  |
| References                                                                     | 39  |
| Contact information                                                            | 40  |
|                                                                                |     |

## Histidine-tagged protein purification

### About histidine-tagged proteins

Histidine-tag is the most used tag worldwide for recombinant proteins. The preparative purification of histidine-tagged recombinant proteins by Immobilized Metal Affinity Chromatography (IMAC) is both popular and highly effective. IMAC exploits the ability of the amino acid histidine to bind chelated transition metal ions, such as nickel (Ni<sup>2+</sup>). Histidinetag purification using IMAC can be performed under both native and denaturing conditions.

#### **Purification challenges**

It is important to get as high yield as possible of the active target protein. A high binding capacity saves you time and reduces consumption of purification media and buffers. Having your target protein in its active form may require the addition of detergents and other additives. As such, the purification method and media must be compatible.

In general, by increasing the concentration of imidazole in your binding and wash buffer you decrease unspecific binding. Conversely, by decreasing the concentration you get a higher capacity due to a stronger affinity interaction. The key is finding the optimal balance. Some target proteins require more purification steps to reach desired purity levels.

### Solutions

Our solutions offer:

- Dramatically higher purification yields through up to four times higher binding capacity than previously available
- Minimized risk of inactive target proteins through excellent compatibility with a very wide range of reducing agents, detergents and other additives
- Reduced hands-on operations and greater flexibility delivered by convenient prepacked columns



## Two-step purification of a high molecular weight histidine-tagged protein

#### Fig. 1A: First purification step with IMAC

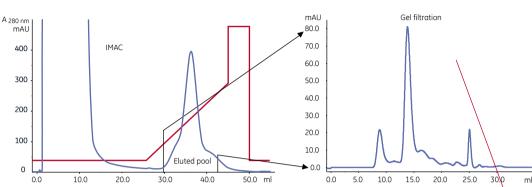
| Sample:        | 10 ml <i>E. coli</i> extract with low-level expression of a histidine-tagged mannanase, Man 26A, from <i>Cellulomonas fimi</i> (M <sub>r</sub> ~ 100 000) |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Column:        | HisTrap HP 1 ml                                                                                                                                           |
| Binding buffer | : 20 mM sodium phosphate, 30 mM imidazole, 500 mM NaCl, pH 7.4                                                                                            |
| Elution buffer | : 20 mM sodium phosphate, 500 mM imidazole, 500 mM NaCl, pH 7.4                                                                                           |
| Gradient:      | 25 ml linear gradient 30-300 mM imidazole                                                                                                                 |
| Flow rate:     | 1ml/min                                                                                                                                                   |
| System:        | ÄKTAexplorer™ 100                                                                                                                                         |
|                |                                                                                                                                                           |

#### Fig. 1B: Second step with gel filtration

Mr 97 000

66 000

45 000


30 000

20 100

14 400

1 2 3 4 5 6

| -          |                                           |
|------------|-------------------------------------------|
| Sample:    | 0.5 ml concentrated sample from IMAC step |
| Column:    | Superdex™ 200 10/300 GL                   |
| Buffer:    | PBS, pH 7.5                               |
| Flow rate: | 0.5 ml/min                                |
| System:    | ÄKTAexplorer 100                          |



#### Conclusions

- The high molecular weight protein histidine-tagged mannanase Man 26A was purified in its enzymatically active form
- Excellent binding properties of Ni Sepharose™ High Performance (HP)
- 60 mg of purified protein in a single run
- A second purification step using gel filtration with Superdex 200 was added for high purity needs

#### **About Ni Sepharose HP**

Ni Sepharose HP delivers narrow peaks and high target protein concentration. It gives:

- High performance purification
- High target protein concentration
- Can be used with a syringe, pump, or system

Ni Sepharose HP is availabile as bulk media and in expertly prepacked HisTrap™ HP and HisPrep™ HP columns.

Fig. 1C: SDS-PAGE

Lane 1: LMW

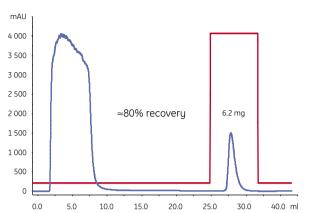
Lane 5: IMAC eluted pool

Lane 6: Gel filtration pool

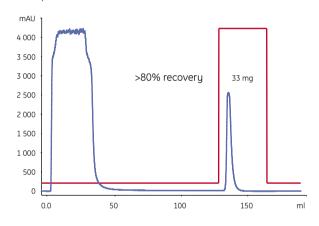
## Scaling up a histidine-tagged protein purification procedure

#### Fig. 2A: Scale-up purificaiton of a histidine-tagged protein

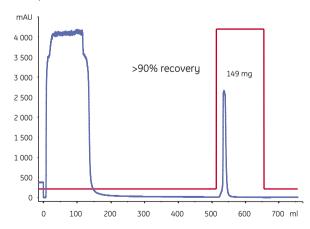
Sample: Histidine-tagged Maltose binding protein in E. coli extract (samples loaded contained 8, 40 and 160 mg, respectively

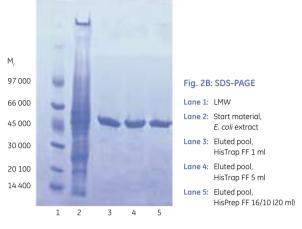

Columns: HisTrap FF 1 ml, HisTrap FF 5 ml, HisPrep FF 16/10 20 ml

Binding buffer: 20 mM sodium phosphate, 25 mM imidazole, 500 mM NaCl, pH 7.4


Elution buffer: 20 mM sodium phosphate, 500 mM imidazole, 500 mM NaCl, pH 7.4

Flow rates: HisTrap FF 1 ml: 1 ml/min; HisTrap FF 5 ml: 5 ml/min; HisPrep FF 16/10: 5 ml/min


#### HisTrap FF 1 ml




HisTrap FF 5 ml



HisPrep FF 20 ml





#### Conclusions

- Scale-up from HisTrap Fast Flow (FF) 1 ml via HisTrap FF 5 ml to HisPrep FF 16/10 (20 ml) is easy and efficient
- Scaling up column dimension while running at the same linear flow rate provides highly consistent results
- Pooled fractions analyzed by SDS-PAGE showed almost identical results in terms of purity and recovery
- Consistently high recovery and purity can be obtained in the different scales using the same flow rates

#### About Ni Sepharose 6 FF

Ni Sepharose 6 FF delivers fast flow rate purification and easy scale-up.

- Expression screening in multi-well plates
- Available expertly prepacked in convenient HisTrap and HisPrep prepacked columns as well as in bulk
- Manual purification, such as gravity flow and batch purification, and fast flow rate purification on systems

## For high performance purification of proteins and narrow peaks with a chromatography system

| Media, prepacked columns and kit | Quantity    | Code no.   |
|----------------------------------|-------------|------------|
| Ni Sepharose HP                  | 25 ml       | 17-5268-01 |
| Ni Sepharose HP                  | 100 ml      | 17-5268-02 |
| HisTrap HP                       | 5 × 1 ml    | 17-5247-01 |
| HisTrap HP                       | 100 × 1 ml* | 17-5247-05 |
| HisTrap HP                       | 1 × 5 ml    | 17-5248-01 |
| HisTrap HP                       | 5 × 5 ml    | 17-5248-02 |
| HisTrap HP                       | 100 × 5 ml* | 17-5248-05 |
| HisTrap HP kit                   | 1           | 17-5249-01 |



Ni Sepharose FF

## For high flow rate purification, scale-up and manual purification

| Media and prepacked columns | Quantity    | Code no.   |
|-----------------------------|-------------|------------|
| Ni Sepharose 6 FF           | 25 ml       | 17-5318-01 |
| Ni Sepharose 6 FF           | 100 ml      | 17-5318-02 |
| Ni Sepharose 6 FF           | 500 ml      | 17-5318-03 |
| HisTrap FF                  | 5 × 1 ml    | 17-5319-01 |
| HisTrap FF                  | 100 × 1 ml* | 17-5319-02 |
| HisTrap FF                  | 100 × 5 ml* | 17-5255-02 |
| HisPrep FF 16/10            | 1 × 20 ml   | 17-5256-01 |

## Polishing gel filtration columns for even higher purity

| Quantity | Code no.                                                                                                                                                                                                                         |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 17-5175-01                                                                                                                                                                                                                       |
| 1        | 17-5174-01                                                                                                                                                                                                                       |
| 1        | 17-5176-01                                                                                                                                                                                                                       |
| 1        | 17-1069-01                                                                                                                                                                                                                       |
| 1        | 17-1068-01                                                                                                                                                                                                                       |
| 1        | 17-1139-01                                                                                                                                                                                                                       |
|          | Quantity           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1 |

#### **Related literature**

| Poster                                                                    | Code no.   |  |
|---------------------------------------------------------------------------|------------|--|
| Improved purification of histidine-tagged proteins with a new IMAC medium | 11-0008-47 |  |
|                                                                           |            |  |
| Data File                                                                 | Code no.   |  |
| Ni Sepharose 6 Fast Flow                                                  | 11-0008-86 |  |
| Ni Sepharose High Performance                                             | 18-1174-40 |  |
| Selection Guide                                                           | Code no.   |  |
| HiTrap™ columns                                                           | 18-1129-81 |  |

\* special pack size delivered to customer order



HisTrap FF



HisPrep FF

## GST-tagged protein purification

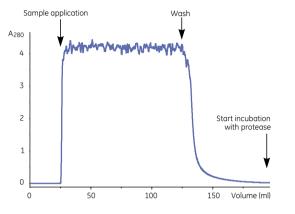
#### About GST-tagged proteins

Glutathione S-transferase (GST) is a versatile means for expression, purification and detection of tagged proteins. GST-tagged proteins are purified by affinity chromatography utilizing immobilized glutathione, such as Glutathione Sepharose HP and FF.

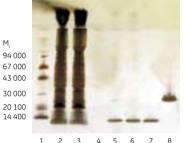
#### **Purification challenges**

A high level of purity for required in most applications. High specificity between the ligand and tag is needed to deliver a highly pure protein. The target protein is bound by the specific affinity medium, impurities are washed away, and the protein target is eluted. Mild elution conditions are used when working with GST-tagged proteins to retain protein activity.

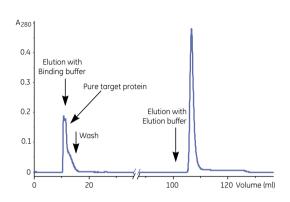
#### Solutions


Our GST-tagged purification is based on Glutathione Sepharose. Glutathione Sepharose HP is for high performance and high resolution purification of GST-tagged proteins. Glutathione Sepharose FF is for high flow rate purification and easy scale-up. They offer:

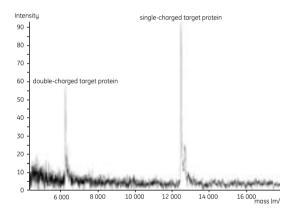
- Increased yield and purity using a one-step protocol for high selectivity
- Simple purification of GST-tagged proteins and other glutathione-S-transferase or glutathione-dependent proteins
- Elution under mild, non-denaturing conditions using reduced glutathione to preserve protein antigenicity and function
- Tag removal and purification at 4° C for improved stability
- The GST-tag can increase expression yield and solubility of your protein


## One-step purification and on-column cleavage of a GST-tagged protein

#### Fig. 3A: Purification of a SH2 domain with concomitant removal of the GST tag


| Sample:            | 100 ml clarified <i>E. coli</i> extract expressing SH2-domain GST-tagged protein (M <sub>r</sub> 37 000) |
|--------------------|----------------------------------------------------------------------------------------------------------|
| Column:            | GSTrap 5 ml                                                                                              |
| Binding buffer:    | 20 mM phosphate, 150 mM NaCl, pH 7.3                                                                     |
| Elution buffer:    | 50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0                                                        |
| Cleavage protease: | 20 U/ml Thrombin Protease for 14 hours at room temperature                                               |
| Flow rates:        | 10 ml/min (sample application and washing) and 2.5 ml/min (elution)                                      |
| System:            | ÄKTAexplorer 10                                                                                          |
|                    |                                                                                                          |








- Lane 1: LMW
- Lane 2: Starting material, E. coli extract
- Lane 3: Flow-through fraction
- Lane 4: Last wash fraction
- Lane 5: SH2-domain without GST-tag eluted with binding buffer, first part of peak
- Lane 6: as lane 5, middle part of peak
- Lane 7: as lane 5, latter part of peak
- Lane 8: Cleaved off GST-tag by elution buffer



## Fig. 3C: MALDI-TOF Mass Spectrometry (MS) analysis of the SH2 domain without GST-tag



#### Conclusions

- One-step purification of the SH2 domain on GSTrap FF 5 ml
- Highly pure target protein was obtained, as demonstrated by SDS-page and MALDI-ToF analysis
- On-column cleavage before elution
- Complete tag removal
- High flow rates (10 ml/min) allowed preparation to be completed four times faster

#### About Glutathione Sepharose 4 FF and GSTrap

- Glutathione Sepharose 4 FF medium provides excellent flow properties and is ideal for scaling up
- GSTrap<sup>™</sup> 5 ml offers simple, one-step purification of GST fusion proteins, other glutathione S-transferases, and glutathione-dependent proteins
- Mild elution conditions preserve antigenicity and functionality
- Can be used with a syringe, pump, or system

GST-taggec proteins

## Scaling up a GST-tagged protein purification procedure



Fig. 4B: GSTrap FF 5 ml

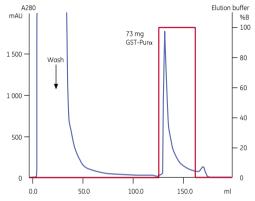
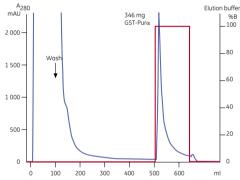
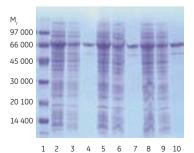





Fig. 4C: GSTPrep FF 16/10





#### Fig. 4D: SDS-PAGE

Lane 1: LMW

- Lane 2: Extract of *E. coli* expressing GST-purα, 1 g cell paste/ 5 ml
- Lane 3: Flow-through from GSTrap FF 1 ml Lane 4: GST-purα eluted from
- GSTrap FF 1 ml
- Lane 5: As lane 2
- Lane 6: Flow-through from GSTrap FF 5 ml
- Lane 7: GST-purα eluted from GSTrap FF 5 ml
- Lane 8: As lane 2
- Lane 9: Flow-through from GSTPrep FF 16/10
- Lane 10: GST-purα eluted from GSTPrep FF 16/10

#### Fig. 4A: GSTrap FF 1 ml

| Sample:         | 5 ml <i>E. coli</i> extract expressing GST-Pur $\alpha$   |
|-----------------|-----------------------------------------------------------|
| Column:         | GSTrap FF 1 ml                                            |
| Binding buffer: | PBS, pH 7.4                                               |
| Elution buffer: | 50 mM Tris-HCl, pH 8.0 with 10 mM reduced glutathione     |
| Flow rate:      | Sample loading: 0.5 ml/min; washing and elution: 1 ml/min |
| System:         | ÄKTAprime™                                                |
|                 |                                                           |

#### Fig. 4B: GSTrap FF 5 ml

| Sample:         | 25 ml <i>E. coli</i> extract expressing GST-Pur $\alpha$  |
|-----------------|-----------------------------------------------------------|
| Column:         | GSTrap FF 5 ml                                            |
| Binding buffer: | PBS, pH 7.4                                               |
| Elution buffer: | 50 mM Tris-HCl, pH 8.0 with 10 mM reduced glutathione     |
| Flow rate:      | Sample loading: 2.5 ml/min; washing and elution: 5 ml/min |
| System:         | ÄKTAprime                                                 |
|                 |                                                           |

#### Fig. 4C: GSTPrep FF 16/10

| Sample:         | 100 ml <i>E. coli</i> extract expressing GST-Purα        |
|-----------------|----------------------------------------------------------|
| Column:         | GSTPrep™ FF 16/10                                        |
| Binding buffer: | PBS, pH 7.4                                              |
| Elution buffer: | 50 mM Tris-HCl, pH 8.0 with 10 mM reduced glutathione    |
| Flow rate:      | Sample loading: 5 ml/min; washing and elution: 10 ml/min |
| System:         | ÄKTAprime                                                |

#### Conclusions

- Consistently high purity in the different scales
- Scale-up from GSTrap FF 1 ml via GSTrap FF 5 ml to GSTPrep™ 16/10 delivers reproducible purification results
- Two or more prepacked GSTrap FF 1 ml or 5 ml columns can easily be connected in series to increase binding capacity
- Note: it is important to keep the flow rate quite low during sample loading due to slow kinetics between the GST-tag and the ligand glutathione

#### About GSTPrep FF 16/10

- Prepacked 20 ml HiPrep<sup>™</sup> columns with Glutathione Sepharose 4 FF for scale-up purification of recombinant GST-tagged proteins, other glutathione S-transferases and glutathione-dependent proteins
- Sepharose 4 FF matrix in combination with HiPrep column provide excellent flow properties
- Mild elution conditions preserve protein antigenicity and function

## For high performance purification of GST-tagged proteins

| Media and prepacked columns | Quantity    | Code no.   |
|-----------------------------|-------------|------------|
| Glutathione Sepharose HP    | 25 ml       | 17-5279-01 |
| Glutathione Sepharose HP    | 100 ml      | 17-5279-02 |
| GSTrap HP                   | 5 × 1ml     | 17-5281-01 |
| GSTrap HP                   | 100 × 1 ml* | 17-5281-05 |
| GSTrap HP                   | 1 × 5 ml    | 17-5282-01 |
| GSTrap HP                   | 5 × 5 ml    | 17-5282-02 |
| GSTrap HP                   | 100 × 5 ml* | 17-5282-05 |



GSTrap HP

## For high flow rate purification and scale-up of GST-tagged proteins

| Media and prepacked columns | Quantity  | Code no.   |
|-----------------------------|-----------|------------|
| Glutathione Sepharose 4 FF  | 25 ml     | 17-5132-01 |
| Glutathione Sepharose 4 FF  | 100 ml    | 17-5132-02 |
| Glutathione Sepharose 4 FF  | 500 ml*   | 17-5132-03 |
| GSTrap FF                   | 2×1ml     | 17-5130-02 |
| GSTrap FF                   | 5 × 1 ml  | 17-5130-01 |
| GSTrap FF                   | 1 × 5 ml  | 17-5131-01 |
| GSTrap FF                   | 5 × 5 ml  | 17-5131-02 |
| GSTPrep FF 16/10            | 1 × 20 ml | 17-5234-01 |

### Automated chromatography system(s) cited

| System          | Quantity | Code no.   |
|-----------------|----------|------------|
| ÄKTAprime       | 1        | 18-1139-47 |
| ÄKTAexplorer 10 | 1        | 18-1300-00 |

#### Related literature

| Poster                                                              |            |
|---------------------------------------------------------------------|------------|
| Rapid purification of GST-fusion proteins from large sample volumes | 18-1139-51 |
| Data file                                                           | Code No.   |
| Glutathione Sepharose 4 Fast Flow                                   | 18-1174-85 |
| Glutathione Sepharose High Performance                              | 18-1174-32 |
| GST gene fusion system                                              | 18-1159-30 |
| Selection Guide                                                     | Code No.   |

| Selection Guide | Code No.   |
|-----------------|------------|
| HiTrap columns  | 18-1129-81 |
|                 |            |

\* special pack size delivered to customer order



Glutathione Sepharose 4 FF and GSTrap FF



ÄKTAexplorer

## High throughput protein purification

### About high throughput purification

The use of recombinant proteins has increased greatly over recent years. The incorporation of fusion tags simplifies the purification process and can also increase yield due to increased solubility of the expressed proteins.  $(His)_6$  and GST, the most widely used tags for recombinant proteins, allow for protocol automation and rapid purification.

#### **Purification challenges**

To obtain the highest protein purity, purification protocols must include multiple steps. However, running many samples simultaneously through multi-step protocols is a tedious and time consuming process using traditional chromatography systems. Additionally, many downstream applications require the removal of the fusion tags, which increases the complexity of the protocol. Completely automating this process allows the user to concentrate on other important tasks.

### Solutions

ÄKTAxpress™ is the first fully integrated automated platform for high throughput multi-step purification of tagged proteins. ÄKTAxpress is a modular platform that combines hardware, UNICORN™ software, columns and media. Depending on system configuration, ÄKTAxpress means you can:

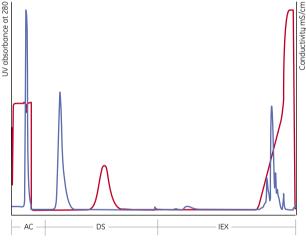
- Run up to 48 samples simultaneously
- Get up to 50 mg of up to >95% pure target proteins without manual intervention
- Use method wizards for creating and using pre-optimized protocols, encompassing on-column tag cleavage



## Optimizing protocols for automated multi-step purification of histidine- and GST-tagged proteins

ÄKTAxpress purification protocols start with affinity chromatoaraphu, followed bu combinations of desalting, ionexchange and gel filtration. See Table 1 for a description of available multi-step protocols on ÄKTAxpress. An example from an automated three-step protein purification prototcol is presented in Fig. 5A. Flow-through fraction from sample

loading and unselected peaks are saved in separate vessels (not shown). Intermediate peaks are stored in internal capillary loops and automatically injected onto the next column. Preparation and washing of columns are done during each run as a part of the purification protocol.

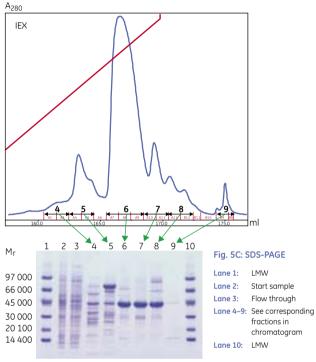

### Fig. 5A: Automated multi-step purification of a histidine-tagged kinase

| Sample:            | Histidine-tagged kinase (Mr 42 200, pl 5.75) expressed in E.Coli              |
|--------------------|-------------------------------------------------------------------------------|
| Columns            |                                                                               |
| AC:                | HisTrap HP, 1ml                                                               |
| DS:                | HiPrep™ 26/10 Desalting                                                       |
| IEX:               | MonoQ™ 5/50 GL, 1ml                                                           |
| Buffers            |                                                                               |
| AC binding buffer: | 50 mM Tris-HCl, 500 mM NaCl, 5 mM imidazole, 1 mM DTT,<br>10 % glycerol, pH 8 |
| AC elution buffer: | 50 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, 1 mM DTT,                      |

10 % glycerol, pH 8

IEX elution buffer:

DS and IEX binding buffer: 50 mM Tris-HCl, 25 mM NaCl, 1mM DTT, 10 % glycerol, pH 7.5 50 mM Tris-HCl, 1 M NaCl, 1mM DTT, 10 % glycerol, pH 7.5




AC: Affinity chromatography, DS: Desalting, IEX: Ion exchange chromatography

#### Conclusions

- Automated multi-step purification of a histidine-tagged protein kinase
- Final step (Fig. 5B) shows different phosphoforms of the purified kinase and very high purity
- Method wizard for easy creation of purification protocols
- Effective automated peak detection and collection in intermediate steps

#### Fig. 5B: Final step



#### Table 1: Available multi-step protocols supported by ÄKTAxpress

| Protocols    | Effects of the additional chromatographic steps                                                     |
|--------------|-----------------------------------------------------------------------------------------------------|
| AC-DS        | Buffer exchange                                                                                     |
| AC-GF        | Separation from undesired aggregates and contaminants                                               |
| AC-DS-IEX    | Separation from other isoforms (e.g. heterogeneously<br>phosphorylated or glycosylated proteins)    |
| AC-DS-IEX-DS | Separation from other isoforms on IEX and buffer exchange on DS                                     |
| AC-DS-IEX-GF | Separation from other isoforms on IEX and removal of undesired<br>aggregates and contaminants on GF |
|              |                                                                                                     |

AC: Affinity chromatography

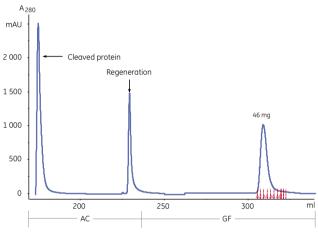
DS: Desalting

GF: Gel filtration

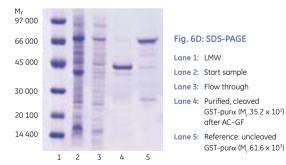
IEX: Ion exchange chromatography

## Automated tag removal using ÄKTAxpress

#### Columns:


- AC: HisTrap HP 5 ml [for (His)<sub>6</sub>-tagged proteins]
- AC: GSTrap HP 5 ml [for GST-tagged proteins]
- DS: HiPrep 26/10 Desalting, 53 ml
- IEX: RESOURCE™ Q, 6 ml
- GF: HiLoad 16/60 Superdex 75 prep grade, 120 ml

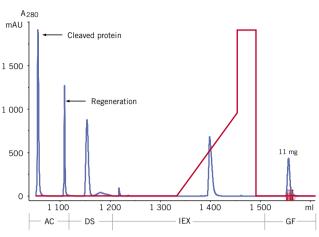
#### **Buffers**:


| AC (His) binding buffer:                 | 50 mM Tris-HCl, 500 mM NaCl, 20 mM imidazole, pH 7.5     |  |
|------------------------------------------|----------------------------------------------------------|--|
| AC (His) cleavage buffer:                | 50 mM Tris-HCl, 500 mM NaCl, 50 mM imidazole, pH 7.5     |  |
| AC (His) elution buffer:                 | 50 mM Tris-HCl, 500 mM NaCl, 500 mM imidazole, pH 7.5    |  |
| AC (GST) binding and<br>cleavage buffer: | 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.5 |  |
| AC (GST) elution buffer:                 | 50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0        |  |
| DS and IEX binding buffer:               | 50 mM Tris-HCl, pH 8.0                                   |  |
| IEX elution buffer:                      | 50 mM Tris-HCl, 1 M NaCl, pH 8.0                         |  |
| GF buffer:                               | 50 mM Tris-HCl, 150 mM NaCl, pH 7.5                      |  |

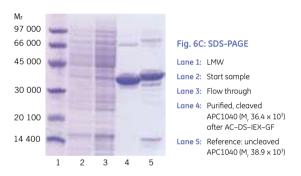
#### Fig. 6B: Automated cleavage and purification using PreScission™ protease

Sample: GST-pura; GST-tagged Two-step protocol: AC-GF




AC: Affinity chromatography, GF: Gel filtration




#### Fig. 6A: Automated cleavage and purification using a AcTEV Protease

#### Four-step protocol: 4-steps: AC-DS-IEX-GF





AC: Affinity chromatography, DS: Desalting, IEX: Ion exchange chromatography, GF: Gel filtration



#### Conclusions

- Fully-automated tag removal using PreScission and AcTEV Protease
- Yields of tens-of-milligrams without the fusion protein were obtained
- All processed proteins were of high purity

#### **About ÄKTAxpress**

- Two- to four-step protocols deliver the highest possible purity (up to >95%)
- Automatic tag removal is possible with all protocols
- High throughput: 16 samples overnight using a two-step purification, eight samples a day using a four-step purification protocol on a four-module system
- Automation eliminates time consuming manual tasks
- Up to four samples can be purified simultaneously per module
- Up to 12 modules can be controlled from one computer

### High throughput systems for unattended multi-step operations

| System                                           | Quantity | Code no.   |
|--------------------------------------------------|----------|------------|
| ÄKTAxpress, four module system with computer     | 1        | 18-6645-05 |
| ÄKTAxpress TWIN, two module system with computer | 1        | 11-0012-85 |

## Affinity chromatography products for high throughput protein purification

| Prepacked columns | Quantity    | Code no.   |
|-------------------|-------------|------------|
| HisTrap HP        | 5 × 1 ml    | 17-5247-01 |
| HisTrap HP        | 100 × 1 ml* | 17-5247-05 |
| HisTrap HP        | 5 × 5 ml    | 17-5248-02 |
| HisTrap HP        | 100 × 5 ml* | 17-5248-05 |
| GSTrap HP         | 5 × 1 ml    | 17-5281-01 |
| GSTrap HP         | 100 × 1 ml* | 17-5281-05 |
| GSTrap HP         | 5 × 5 ml    | 17-5282-02 |
| GSTrap HP         | 100 × 5 ml* | 17-5282-05 |
|                   |             |            |

## Desalting products for high throughput protein purification

| Prepacked columns      | Quantity    | Code no.   |
|------------------------|-------------|------------|
| HiPrep 26/10 Desalting | 1 × 53 ml   | 17-5087-01 |
| HiPrep 26/10 Desalting | 4 × 53 ml   | 17-5087-02 |
| HiTrap Desalting       | 5 × 5 ml    | 17-1408-01 |
| HiTrap Desalting       | 100 × 5 ml* | 11-0003-29 |

#### Ion exchange products for high throughput protein purification

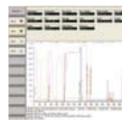
| Prepacked columns | Quantity                | Code no.   |
|-------------------|-------------------------|------------|
| Mono Q 5/50 GL    | 1×1ml                   | 17-5166-01 |
| Mono S™ 5/50 GL   | 1×1ml                   | 17-5168-01 |
| RESOURCE Q        | $1 \times 1 \text{ ml}$ | 17-1177-01 |
| RESOURCE S        | 1×1ml                   | 17-1178-01 |
| RESOURCE Q        | 1 × 6 ml                | 17-1179-01 |
| RESOURCE S        | 1 × 6 ml                | 17-1180-01 |

### Gel filtration products for high throughput protein purification

| Prepacked columns            | Quantity   | Code no.   |
|------------------------------|------------|------------|
| HiLoad 16/60 Superdex 75 pg  | 1 × 120 ml | 17-1068-01 |
| HiLoad 16/60 Superdex 200 pg | 1 × 120 ml | 17-1069-01 |

#### **Related literature**

| Code No.      |
|---------------|
| 18-1177-69 AB |
|               |
| Code No.      |
| 11-0011-26    |
| 11-0011-25    |
|               |


\* special pack size delivered to customer order



HisTrap and MonoBeads in ÄKTAxpress



ÄKTAxpress



UNICORN method wizard

## Antibody purification

#### About antibody purification

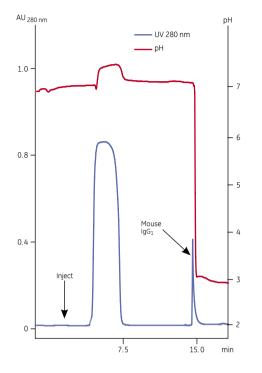
There are growing numbers of general research, therapeutic and diagnostic applications for antibodies (MAbs) and their fragments. The high specificity of a MAbs is a significant advantage, particularly in therapeutic applications and immunoblotting. Polyclonal antibodies are commonly used as reagents in immunochemical techniques, using crude serum from different species as the source.

#### **Purification challenges**

MAbs can be produced both *in vivo* and *in vitro*. *In vivo* involves purification from ascites which contain many other proteins, including host proteins, lipids and cell debris. Separating out host proteins is usually challenging. That's because there is a high abundance of albumin, host proteins have both a similarity in charge characteristics and similar properties to immunoglobulin. Lipids in ascites may also clog the column if they are not first removed. MAbs produced in cell culture are diluted, so purification must concentrate the sample.

#### Solutions

Protein G and Protein A Sepharose media are designed for purification of monoclonal and polyclonal IgG from ascites, serum and cell culture supernatants. They offer:


- Excellent purity (>95%) in one step
- High capacity for high yields
- High selectivity excludes most other proteins from binding
- Convenient prepacked columns and bulk packs

Despite gaining high purity from the affinity step, a polishing step using gel filtration is usually required to separate aggregates and/or dimers. Our Superdex medium is ideal for polishing and removing aggregates and/or dimers.

## Purification of a mouse IgG, MAb from cell culture using Protein G

#### Fig. 7A: Capture step of Protein G purified mouse IgG<sub>1</sub> antibody

| Sample:             | cell culture supernatant mouse ${\rm IgG}_{\rm 1}$ |
|---------------------|----------------------------------------------------|
| Column:             | HiTrap Protein G HP 1 ml                           |
| Binding buffer:     | 20 mM sodium phosphate, pH 7.0                     |
| Elution buffer (B): | 0.1 M glycine-HCl, pH 2.7                          |
| System:             | ÄKTAprime                                          |
|                     |                                                    |



#### Conclusions

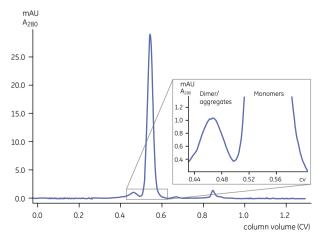
- The automated two-step purification procedure using affinity and gel filtration chromatography is applicable for a wide range of general purification problems
- Protein G and Protein A Sepharose HP are designed for purification of monoclonal and polyclonal IgG from ascites, serum and cell culture supernatants
- Protein G and protein A, however, have different IgG binding specificities, dependent on the IgG origin (see table, pg. 17)

#### **About Protein G Sepharose HP**

For convenient and rapid standard purification for monoclonal IgG antibodies:

- Binding of up to 25 mg human IgG/ml medium
- High capacity and fast binding kinetics
- Stability from pH 3-9 for use and 2-9 for cleaning
- Simple operations with a syringe, pump, or high performance chromatographic system, such as ÄKTAdesign™

## Monomer/dimer separation of a MAb


Fig. 7B: Polishing of Protein G purified IgG<sub>1</sub> antibody using gel filtration

 Column:
 Superdex 200 10/300 GL

 Buffer:
 PBS, pH 7.2

 Flow rate:
 0.7 ml/min

 System:
 ÄKTAFPLcTM



#### Conclusions

In most antibody preparations there is a possibility that IgG aggregates and dimers are present. Therefore, it is essential to include a gel filtration polishing step to get pure, homogenous MAbs. Superdex 200 gel filtration is an excellent medium for this purpose, as can be seen in Fig. 7B.

#### **About Superdex 200**

Superdex 200 medium is ideal for polishing and removing aggregates and dimers in MAb purification because:

- Separations in the range from  $M_r$  10 000 up to 600 000 (globular proteins)
- Easy and predictable scale-up
- Excellent reproducibility and durability
- Available in expertly prepacked columns and as bulk media

## Purification of humanized IgG, from cell culture using Protein A

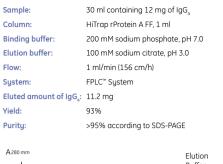
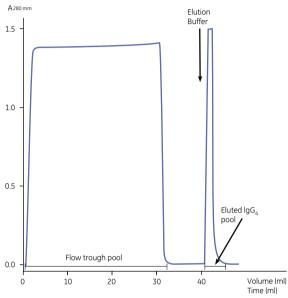




Fig. 8A: Purification using HiTrap rProtein A FF 1 ml



#### M, 97 000 66 000 43 000 30 000 20 100 14 400 1 2 3 4

#### Conclusions

- Humanised  ${\rm IgG_4}$  was purified directly from a myeloma cell culture, resulting in a highly purified MAb with 93% yield
- The purity from one-step purification was > 95%

#### About HiTrap Protein A Sepharose HP

- Prepacked with Protein A Sepharose HP for high capacity and selectivity purification and fractionation of IgG subclasses
- About 50 mg of human polyclonal IgG purified in one run
- Stable over pH 3-9 for use, and 2-10 for cleaning
- Simple operations with a syringe, pump, or high performance chromatographic system, such as ÄKTAdesign

## Relative binding strengths: protein A and protein G

Here are the relative binding strengths of polyclonal immunoglobulins from various species to protein A and protein G, as measured in a competitive ELISA test.

| Species         | Subclass          | Protein A | Protein G |
|-----------------|-------------------|-----------|-----------|
| Human           | IgA               | variable  | -         |
|                 | IgD               | -         | -         |
|                 | IgE               |           |           |
|                 | IgG <sub>1</sub>  | +++++     | ++++      |
|                 | IgG <sub>2</sub>  | ++++      | ++++      |
|                 | IgG <sub>3</sub>  | -         | ++++      |
|                 | IgG <sub>4</sub>  | ++++      | ++++      |
|                 | IgM*              | variable  | -         |
| Avian egg yolk  | IgY†              | -         | -         |
| Cow             | -                 | ++        | ++++      |
| Dog             | -                 | ++        | +         |
| Goat            | -                 | -         | ++        |
| Guinea pig      | lgG <sub>1</sub>  | ++++      | ++        |
|                 | IgG <sub>2</sub>  | ++++      | ++        |
| Hamster         | -                 | +         | ++        |
| Horse           | -                 | ++        | ++++      |
| Koala           | -                 | -         | +         |
| Llama           | -                 | -         | +         |
| Monkey (rhesus) | -                 | ++++      | ++++      |
| Mouse           | IgG <sub>1</sub>  | +         | ++++      |
|                 | IgG <sub>2a</sub> | ++++      | ++++      |
|                 | IgG <sub>2b</sub> | +++       | +++       |
|                 | IgG <sub>3</sub>  | ++        | ++++      |
|                 | lgM*              | variable  | -         |
| Pig             | IgM*              | +++       | +++       |
| Rabbit          | no distinction    | ++++      | +++       |
| Rat             | IgG <sub>1</sub>  | -         | +         |
|                 | IgG <sub>2a</sub> | -         | ++++      |
|                 | IgG <sub>2b</sub> | -         | ++        |
|                 | IgG <sub>3</sub>  | +         | ++        |
| Sheep           | lgG <sub>3</sub>  | +/-       | ++        |

\* Purify using HiTrap IgM purification HP columns

† Purify using HiTrap IgY purification HP columns

- Weak or no binding

## For applications requiring narrow peaks and high concentration

| Media, prepacked columns and kit | Quantity | Code no.   |
|----------------------------------|----------|------------|
| HiTrap Protein A HP              | 5 × 1 ml | 17-0402-01 |
| HiTrap Protein A HP              | 2 × 1 ml | 17-0402-03 |
| HiTrap Protein A HP              | 1 × 5 ml | 17-0403-01 |
| HiTrap Protein G HP              | 5 × 1 ml | 17-0404-01 |
| HiTrap Protein G HP              | 2 × 1 ml | 17-0404-03 |
| HiTrap Protein G HP              | 1 × 5 ml | 17-0405-01 |
| MAbTrap™ Kit                     | 1        | 17-1128-01 |



HiTrap Protein A

HiTrap Protein G

## For applications requiring high yield and scale-up

| Media and prepacked columns and media | Quantity | Code no.   |
|---------------------------------------|----------|------------|
| rProtein A Sepharose 4 FF             | 5 ml     | 17-1279-01 |
| rProtein A Sepharose 4 FF             | 25 ml    | 17-1279-02 |
| rmp Protein A Sepharose FF            | 5 ml     | 17-5138-01 |
| rmp Protein A Sepharose FF            | 25 ml    | 17-5138-02 |
| Protein G Sepharose 4 FF              | 5 ml     | 17-0618-01 |
| Protein G Sepharose 4 FF              | 25 ml    | 17-0618-02 |
| HiTrap rProtein A FF                  | 5 × 1 ml | 17-5079-01 |
| HiTrap rProtein A FF                  | 2 × 1 ml | 17-5079-02 |
| HiTrap rProtein A FF                  | 1 × 5 ml | 17-5080-01 |

## For removal of aggregates and polishing

| Related products                     | Quantity | Code no.   |
|--------------------------------------|----------|------------|
| HiLoad 16/60 Superdex 200 prep grade | 1        | 17-1069-01 |
| HiLoad 26/60 Superdex 200 prep grade | 1        | 17-1071-01 |
| Superdex 200 10/300 GL               | 1        | 17-5175-01 |
| Superdex 200 prep grade              | 25 ml    | 17-1043-10 |
| Superdex 200 prep grade              | 150 ml   | 17-1043-01 |

### Automated chromatography system(s) cited

| System    | Quantity | Code no.   |
|-----------|----------|------------|
| ÄKTAFPLC  | 1        | 18-1118-67 |
| ÄKTAprime | 1        | 18-1139-47 |

#### Related literature

| Code No.   |
|------------|
| 18-1134-76 |
| 18-1113-94 |
| 18-1012-91 |
|            |

| Selection Guide | Code No.   |
|-----------------|------------|
| HiTrap Columns  | 18-1129-81 |



HiLoad Superdex

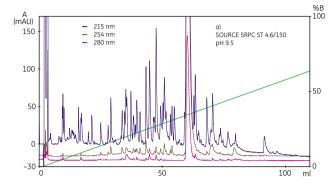
Antibody

## Analytical separations

## About analytical separations

After a protein is purified it is vital to find accurate techniques for the identification and characterisation of impurities and the target molecule. Common analyses tasks include:

- monomer/dimer determination
- enzyme activity
- purity and yield determination
- characterisation of a peptide map from a tryptic digest to identify post translational modifications


#### **Solutions**

- High resolution chromatography techniques offer high selectivity, speed, simplicity, and robustness
- An automated procedure encompassing sample injection and evaluation can be set up when many samples must be handled
- SOURCE<sup>™</sup> RPC columns are ideal for applications requiring wide pH ranges

## RPC separation for peptide mapping at high pH

#### Fig. 9A: Peptide mapping at pH 9.5 using SOURCE 5RPC ST 4.6/150

| Sample:    | (RVP-BSA-mT), ca 750 pmol                 |
|------------|-------------------------------------------|
| Column:    | SOURCE 5RPC ST 4.6/150                    |
| Eluent A:  | 10 mM NH <sub>4</sub> OH/HCOOH, pH 9.5    |
| Eluent B:  | 60% acetonitrile in eluent A              |
| Gradient:  | 0–67% B over 115 ml i.e. 46 column volume |
| Flow rate: | 0.5 ml/min                                |
| System:    | ÄKTApurifier™ 10                          |
|            |                                           |



#### Conclusions

- SOURCE 5RPC ST 4.6/150 proved very useful for alkaline purification of peptides, which are particularly difficult to dissolve in acidic solutions
- The polymeric matrix of the SOURCE medium makes it possible to perform RPC at high pH, offering high resolution and superior sensitivity for MS detection

#### About SOURCE 5RPC ST 4.6/150

SOURCE 5RPC ST 4.6/150 stainless steel columns are designed for analytical reversed phase chromatography of peptides, protein fragments, and oligonucleotides. Thye offer:

- Superior resolution in a very broad pH range (1-12)
- Outstanding performance at high pH
- Long lifetime due to high chemical and physical resistance
- High column-to-column reproducibility

## Purity analysis of synthetic oligonucleotides

#### Fig. 9B: Purity check of a synthetic oligonucleotide

| (D       |          |
|----------|----------|
| σ        |          |
| Ω        | ā        |
| -        | ,=       |
| Q        | <u>ل</u> |
| <u> </u> | <u> </u> |
| 0        | 8        |
|          | <u> </u> |
| S        |          |
|          |          |
|          |          |

S

| -              |                                                  |
|----------------|--------------------------------------------------|
| Sample:        | 5'-biotinylated synthetic oligonucleotide 20-mer |
| Column:        | Mini Q™ 4.6/50 PE                                |
| Start buffer:  | 10 mM NaOH                                       |
| Eluent buffer: | : 10 mM NaOH, 2 M NaCl                           |
| Gradient:      | 0-67% B over 115 ml i.e. 46 column volume        |
| Flow rate:     | 1.0 ml/min                                       |
| Sustem:        | ÄKTApurifier                                     |

#### mS/cı mAU Biotinulated 20-mei 40.0 50.0 Crude 20.0 synthesis mixture 0.0 200 30.0 40.0 ml mS/ci mAL 40.0 50.0 20.0 After purification 0.0 20.0 30.0 40.0 ml

#### Conclusions

• A powerful tool for purity check of synthetic oligonucleotides as Tricorn Mini Q<sup>™</sup> is an anion exchange column and binds to the negative charged oligonucleotides

#### **About Tricorn MiniBeads**

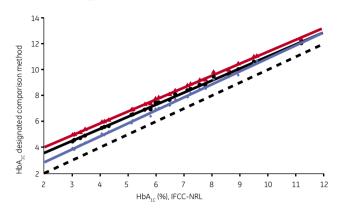
- Tricorn™ high performance columns expertly prepacked with MiniBeads ion exchange chromatography media. They offer:
- Exceptional resolution with high reproducibility
- Extremely homogeneous 3 µm non-porous beads, yielding exceptional resolution, speed, reproducibility and durability
- Separation of proteins, peptides, oligonucleotides, carbohydrates, and other biomolecules according to charge using Mini Q and Mini S™
- Usage for both analytical and micropreparative applications

## Analysis of glycated and non-glycated hemoglobin A<sub>1c</sub>

#### 10 ml hemolyzed EDTA blood Sample: Mono S™ 5/50 GL Column: Buffer A 20 mM sodium malonate. 0.2 a/l sodium azide. pH 5.7 buffer A + 0 3 M LiCl Buffer B 20-50% B for 3 min: 50-75% B for 1.1 min. 75-100% B for 0.3 min. Gradient<sup>.</sup> 100% B for 2.6 min, 20% B for 1 min Flow rate: 2 ml/min mAU % B -lh4 0.05 100 HbA<sub>1c</sub> 0.04 75 0.03 50 0.02 25 0.01 HbA-0 0 5 8 Time (minutes)

#### Fig. 10A: Analysis of hemoglobin A<sub>1c</sub>

## Conclusions


- Hemoglobin-A<sub>1c</sub> (HbA<sub>1c</sub>) is measured for evaluating the longterm control of diabetic patients
- Tricorn Mono S fully separates all different forms of glycosylated and non-glycosylated hemoglobin (Fig. 10A)
- The Mono S method has been used for two decades in Sweden to calibrate instruments that measure  $HbA_{1c}(1, 2)$ . Fig. 7B shows that the Swedish-designated calibration method has highest resolution for the  $HbA_{1c}$  top and therefore lies closest to the standard set by the IFCC (3), in comparison against two other nationally-designated calibration methods.
- The Mono S method is a reliable and well-tested method for the measurement and calibration of HbA<sub>1c</sub> instruments.

#### **About Tricorn MonoBeads**

Monodisperse porous beads expertly prepacked into Tricorn high performance columns for picogram to microgram-scale micropreparative and analytical separations of proteins peptides, protein fragments, and oligonucleotides. They offer:

- High resolution, reproducibility, and durability
- High purity levels for analysis and polishing
- Fast and simple operations using a high performance chromatography system, such as ÄKTAdesign

Fig 10B: Comparison of HbA<sub>1c</sub> measured with nationally-designated methods and HbA<sub>1c</sub> as defined by the IFCC method (4).



## For RPC applications requiring wide pH ranges

| Prepacked columns       | Quantity | Code no.   |
|-------------------------|----------|------------|
| SOURCE 5RPC ST 4.6/150  | 1        | 17-5116-01 |
| SOURCE 15RPC ST 4.6/100 | 1        | 17-5068-01 |

### For analytical applications requiring high resolution and binding capacity

| Prepacked Tricorn columns | Quantity | Code no.   |
|---------------------------|----------|------------|
| Mono Q 5/50 GL            | 1        | 17-5166-01 |
| Mono Q 10/100 GL          | 1        | 17-5167-01 |
| Mono Q 4.6/100 PE         | 1        | 17-5179-01 |
| Mono S 5/50 GL            | 1        | 17-5168-01 |
| Mono S 10/100 GL          | 1        | 17-5169-01 |
| Mono S 4.6/100 PE         | 1        | 17-5180-01 |

#### For analytical applications requiring extremely high resolution

| Prepacked Tricorn columns | Quantity | Code no.   |
|---------------------------|----------|------------|
| Mini Q 4.6/50 PE          | 1        | 17-5177-01 |
| Mini S 4.6/50 PE          | 1        | 17-5178-01 |
| Mini Q PC 3.2/3           | 1        | 17-0686-01 |
| Mini S PC 3.2/3           | 1        | 17-0687-01 |

#### For analytical applications requiring high resolution and high recovery

| Prepacked Tricorn columns  | Quantity | Code no.   |
|----------------------------|----------|------------|
| Superdex Peptide 10/300 GL | 1        | 17-5176-01 |
| Superdex 75 10/300 GL      | 1        | 17-5174-01 |
| Superdex 200 10/300 GL     | 1        | 17-5175-01 |

#### For analytical applications requiring broad fraction range

| Prepacked Tricorn columns | Quantity | Code no.   |
|---------------------------|----------|------------|
| Superose™ 6 10/300 GL     | 1        | 17-5172-01 |
| Superose 12 10/300 GL     | 1        | 17-5173-01 |

### Automated chromatography system(s) cited

| System          | Quantity | Code no.   |
|-----------------|----------|------------|
| ÄKTApurifier 10 | 1        | 18-1400-00 |

#### **Related literature**

| Data File                                                     | Code No.   |
|---------------------------------------------------------------|------------|
| SOURCE 5RPC ST 4.6/150 and ST 2.1/150                         | 18-1132-36 |
| Tricorn MonoBeads                                             | 18-1165-92 |
| Tricorn MiniBeads                                             | 18-1165-93 |
| Tricorn Superdex                                              | 18-1163-79 |
| Tricorn Superose                                              | 18-1163-80 |
| Application note                                              | Code No.   |
| Hemoglobin A <sub>1c</sub> measurement with Mono S method 18- |            |
|                                                               |            |



SOURCE 5RPC



Tricorn MiniBeads



ÄKTApurifier

## Purification of non-tagged proteins

#### Purifying non-tagged proteins

Non-tagged protein purification can vary from simple onestep precipitation procedures to large scale, validated processes for biopharmaceutical manufacture. The need to purify a protein to sufficient purity and quantity levels in a simple, fast, reliable, and cost-effective manner is essential in all purification applications. A systematic approach can be used to develop a purification strategy.

#### **Purification challenges**

Successful protein purification requires following a multi-step approach to perform Capture, intermediate Purification and Polishing (CiPP). Specific objectives are assigned to each:

- Capture: isolates, concentrates and stabilizes the target protein
- Intermediate purification: removes most bulk impurities, such as: other proteins and nucleic acids, endotoxins and viruses
- Polishing: achieves high purity by removing any remaining trace impurities or closely related substances

### Solutions

GE Healthcare offers a very wide range of lab-scale media and prepacked columns for purifying non-tagged proteins. These cover all major chromatographic techniques and steps. This allows you to:

- Choose logical combinations of purification techniques based on the main benefits of the technique and the condition of the sample at the beginning and end of each step
- Minimize sample handling between purification steps by combining the best techniques
- Increase yield while saving both time and money by using as few steps as possible



## Rapid three-step purification of a labile, oxygen-sensitive enzyme

| Fig. 11A: Capture: anion exchange chromatography |                                                       |
|--------------------------------------------------|-------------------------------------------------------|
| Sample:                                          | 40 ml vlarified E. coli extract of DAOCS, kept on ice |
| Column:                                          | HiPrep 16/10 Q XL                                     |
| Start<br>buffer (A):                             | 50 mM Tris-HCl, 1 mM EDTA, 2 mM DTT,                  |
|                                                  | 0.2 M benzamidine-HCl, 0.2 mM PMSF, pH 7.5;           |
| Elution                                          |                                                       |

#### huffer (B): A + 1 0 M NaCl

| Gradient: | 0% B in 5 column volumes, 30% B in 5 column<br>volume, 100% B in 5 column volumes (step<br>gradient) |
|-----------|------------------------------------------------------------------------------------------------------|
| Flow:     | 10 ml/min (300 cm/h)                                                                                 |
|           |                                                                                                      |

#### Sustem: ÄKTAFPLO

mAl

3 000

2 000

1 000

20 100

14 400

#### Fig. 11B: Intermediate purification: hydrophobic interaction chromatography

- Sample: 40 ml DAOCS pool from HiPrep 16/10 Q XL, kept on ice
- Column: SOURCE 15ISO, packed in HR 16/10 column Start
- buffer (A): 1.6 M ammonium sulphate, 10% glycerol, 50 mM Tris-HCl. 1 mM EDTA, 2 mM DTT. 0.2 mM benzamidine-HCl, 0.2 mM PMSF, pH 7.5

#### Elution

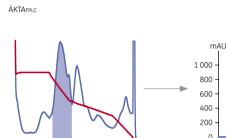
- buffer (B): 50 mM Tris-HCl, 10% glycerol, 1 mM EDTA, 2 mM DTT, 0.2 mM benzamidine-HCl, 0.2 mM PMSF, pH 7.5
- Gradient: 0-16% B in 4 column volume, 16-24% B in 8 column volume, 24-35% B in 4 column volume, 100% B in 4 column volume

#### Flow: 5 ml/min (150 cm/h)

100

#### System:

mAl


400

300

200

100

0



200

ml

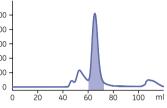



Fig. 11C: Polishing: gel filtration

3 ml DAOCS pool from

0.2 mM PMSF. pH 7.5

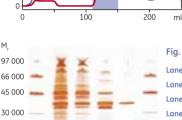
1 ml/min (30 cm/h)

SOURCE 15ISO, kept on ice

100 mM Tris-HCl. 1 mM EDTA

HiLoad 16/60 Superdex 75 prep arade

2 mM DTT 0.2 mM benzamidine-HCl


Sample:

Column:

Buffer:

Flow

System: ÄKTAFPLC



4 5 6 Fig. 11D: SDS-PAGE, silver stained

Lane 1: LMW

mS/cm

80

60

40

20

0

Lane 2: Start material F. coli extract Lane 3: DAOCS pool from O Sepharose XL Lane 4: DAOCS pool from SOURCE 15ISO Lane 5: DAOCS pool from Superdex 75 pg Lane 6: I MW

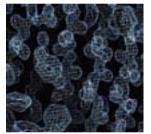



Fig. 11E: High resolution density map of purified DAOCS

#### Conclusions

1

- Rapid purification method with modern, preparative separation media and strategic purification design
- Isolation of 10 mg of an active, highly-labile enzyme to crystallization grade purity
- Timesavings of purification method: from three days to six hours
- Convenient optimization of separation conditions using pre-programmed method templates and scouting functions

#### About RESOURCE 15ISO

- Part of a range of columns prepacked with SOURCE media for fast and high-resolution separations
- Individual RESOURCE products feature ether (SOURCE 15ETH), isopropyl (SOURCE 15ISO) and phenyl (SOURCE 15PHE) hydrophobic ligands
- High performance at low back pressure, even with high sample loads of up to 25 mg of protein

#### About HiPrep 16/10 Q XL

- Prepacked with Sepharose Q XL or SP XL media
- 20 ml preparative anion- and cation-exchange columns provide high loading capacity and fast elution
- Optimized for reliable, reproducible separations

#### About HiLoad 16/60 Superdex 75 prep grade

- HiLoad 16/60 Superdex 75 prep grade is a prepacked XK column for preparative gel filtration separations
- Steep selectivity curves give excellent resolving power for peptides and proteins in M, 3 000-70 000
- High mechanical strength with high hydrophilicity allow high flow rates and minimal nonspecific interactions

## Two-step purification of a native protein at optimized pH

mALL (280nm)

3 500

3 000

2 500

2 000

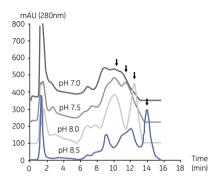
1 500

1 000

500

0

Λ

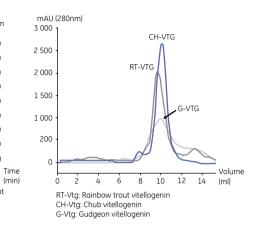

Theoretical aradient

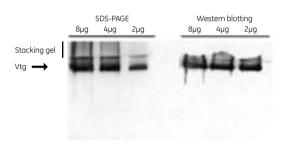
#### Fig. 12A: Capture and intermediate purification: HiTrap Q for anion exchange chromatography

| Sample:        | 250 µl clarified estradiol (E2)-treated<br>vitellogenin (Vtg) fish plasma sample |
|----------------|----------------------------------------------------------------------------------|
| Column:        | HiTrap Q, 1 ml                                                                   |
| Binding buffer | :0.1 M Tris-HCl, 1 mM PMSF, pH 7.0-8.5                                           |
| Flution buffer | 0.1 M Tris-HCL 1 mM PMSE 0.5 M NACL pH                                           |

| Liution bullet. | 0.1111113-1101, 1111111131, 0.311114AC |
|-----------------|----------------------------------------|
|                 | 7.0-8.5                                |
| Flow-rate:      | 5 ml /min                              |

System: ÄKTApurifier 10





## Fig. 12B: Elution profiles from pH optimized anion-exchange step

| Sample:         | 10 ml clarified E2-treated fish plasma |
|-----------------|----------------------------------------|
| Column:         | RESOURCE Q                             |
| Start buffer:   | 0.1 M Tris-HCl, pH 8.5                 |
| Elution buffer: | 0.1 M Tris–HCl, 0.5 M NaCl, pH 8.5     |
| Flow rate:      | 4 ml /min                              |
| System:         | ÄKTApurifier 10                        |

#### Fig. 12C: Polishing using Superdex 200

| Sample:         | Vtg fractions from anion-exchange pooled<br>sample from RESOURCE Q of three E2-<br>treated teleost fish |
|-----------------|---------------------------------------------------------------------------------------------------------|
| Elution buffer: | 0.05 M carbonate-bi-carbonate, pH 9.6                                                                   |
| Flow rate:      | 0.2 ml/min                                                                                              |
| System:         | ÄKTApurifier 10                                                                                         |





#### Fig. 12D: Native PAGE of purified rainbow trout vitellogenin and corresponding Western blotting after the GF-step

Electrophoresis was performed with a 4% stacking gel and 7.5% (w/v) resolving gel of acrylamide and silver stained. Immunoblotting was performed with BN-5 anti-salmon Vtg antibody; complexes were immunodetected by enhanced chemiluminescent method after transfer of proteins to a nitrocellulose paper.

#### Conclusions

5

Measured gradient

3 /1

RT-Vtg: Rainbow trout vitellogenin

mS/cm

90

80

70

60

50

40

30

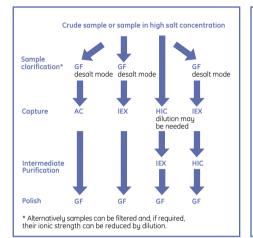
20

10

0

- Vitellogenin (Vtg) was purified from three estradiol-treated teleost fish: rainbow trout, gudgeon and chub (5)
- Anion-exchange chromatography using HiTrap Q was used to optimize pH for capture and intermediate purification; high purity protein-binding capacity in pH 8.5 provided best resolution
- After pH optimization, RESOURCE Q was used for capture and intermediate purification during the routine purification procedure
- Superdex 200 was used in the final polishing step to further separate the degradation product from the native form of the Vtg and to store the final product in the desired buffer
- Combination of RESOURCE Q and Superdex improved reproducibility and decreased processing time

#### About RESOURCE Q and S columns


RESOURCE Q and S are prepacked columns with SOURCE 15 Q or 15 S for fast and simple ion exchange separations. They offer:

- High performance separations over a wide range of operating pressures
- Monodisperse 15  $\mu m$  beads deliver excellent flow characteristics
- Minimal non-specific adsorption and high recovery of purified sample
- Relatively low back pressure at high flow rates, delivering high resolution separations even when using a low-pressure pump

#### Products for purifying non-tagged proteins

GE Healthcare offers a very wide range of lab-scale prepacked columns and media for purifying non-tagged proteins. These cover all major chromatographic techniques and steps. Logical combinations of chromatographic steps is shown in Fig. 13A. A guide to the suitability of each technique for the stages of the Capture, intermediate Purification and Polishing (CiPP) strategy is shown in Table 13B. If nothing is known about the target proteins, an effective general approach is: ion exchange (capture), hydrophobic interaction chromatography (intermediate purification) and gel filtration (polishing). For general information, please consult our Protein Purification Handbook or your local GE Healthcare representative. To identify the products that best suit your needs, please consult our selection guides, available at: www.chromatography.amershambiosciences.com

#### Fig. 13A: guide for combining chromatographic steps



| Technique | Main features                                  | Capture | Intermediate | Polish | Sample Start condition                                                          | Sample End condition                                                          |
|-----------|------------------------------------------------|---------|--------------|--------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| IEX       | high resolution<br>high capacity<br>high speed | ***     | ***          | ***    | low ionic strength<br>sample volume<br>not limiting                             | high ionic<br>strength or<br>pH change<br>concentrated                        |
| HIC       | good resolution<br>good capacity<br>high speed | **      | ***          | *      | high ionic strength<br>sample volume<br>not limiting                            | low ionic<br>strength<br>concentrated                                         |
| AC        | high resolution<br>high capacity<br>high speed | ***     | ***          | **     | specific binding<br>conditions<br>sample volume<br>not limiting                 | specific<br>elution<br>conditions<br>concentrated                             |
| GF        | high resolution<br>using Superdex              |         | *            | ***    | limited sample<br>volume (<5% total<br>column volume)<br>and flow rate<br>range | buffer<br>exchanged<br>(if required)<br>diluted                               |
| RPC       | high resolution                                |         | *            | ***    | requires organic<br>solvents                                                    | in organic<br>solvent, risk loss<br>of biological<br>activity<br>concentrated |

Table 13B: suitability of technique for the stages of the CiPP strategy

AC: Affinity chromatography, DS: Desalting, IEX: Ion exchange chromatography, GF: Gel filtration, HIC: Hydrophobic Interaction chromatography, RPC: Reversed phase chromatography

#### Automated chromatography system(s) cited

| System          | Quantity | Code no.   |
|-----------------|----------|------------|
| ÄKTApurifier 10 | 1        | 18-1400-00 |
| ÄKTAFPLC        | 1        | 18-1900-26 |

#### **Related literature**

| Code no.   |
|------------|
| 18-1127-31 |
| 18-1124-19 |
| 18-1121-86 |
| 18-1128-62 |
| 18-1129-81 |
| 18-1173-49 |
|            |

## Refolding proteins from inclusion bodies

#### About refolding recombinant proteins

For the expression of recombinant proteins, *E. coli* represents the most commonly used approach. Proteins are expressed either in cytoplasm or secreted. Over-expression of proteins in some cases leads to accumulation of the proteins in insoluble polypeptide aggregates, called inclusion bodies.

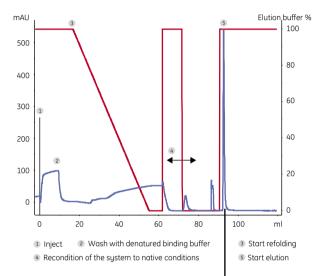
#### **Purification challenges**

To transform the proteins insoluble in within the inclusion bodies into a useful soluble, bioactive protein.

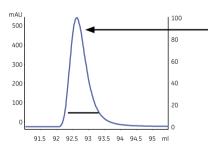
#### Solutions

Chromatographic on-column refolding offers:

- Automated procedures
- Reliable, simple scale-up
- Refolding and purification in a single step, simultaneously
- High compatibility and chemical stability with different additives, reducing agents, denaturing agents and detergents
- Convenient optimization of separation conditions using pre-programmed method templates and scouting functions



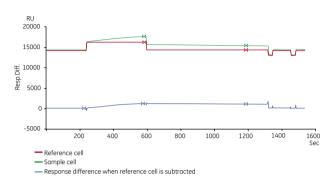

Refolding proteins from inclusion bodies


## One-step on-column refolding and purification of a Histidine-tagged protein from *E. coli* inclusion bodies

#### Fig. 14A: On-column refolding and purification

| Sample:                   | Histidine-tagged, solubilized single chain Fv antibody fragment<br>Fab 57P, 10 ml (conc. 0.67 mg/ml) <i>E. coli</i> inclusion bodies           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Column:                   | HisTrap HP 1 ml                                                                                                                                |
| Solubilizing buffer:      | 20 mM Tris-HCl, 6 M Gua-HCl, 1 mM DTE, 1mM Na₂-EDTA,<br>0.1 mM Pefabloc™, pH 7.5                                                               |
| Binding denatured buffer: | 20 mM Tris-HCl, 5 mM imidazole, 0.5 M NaCl, 8 M urea,<br>1 mM DTE, 0.1 mM Pefabloc, pH 7.5                                                     |
| Refolding buffer:         | 20 mM Tris-HCl, 5 mM imidazole, 0.5 M NaCl, 0.5 M arginine-HCl,<br>1 mM reduced glutathione (GSH), 1 mM oxidised glutathione<br>(GSSG), pH 7.5 |
| Native binding buffer:    | 20 mM Tris-HCl, 10 mM imidazole, 0.5 M NaCl, pH 7.5                                                                                            |
| Native elution buffer:    | 20 mM Tris-HCl, 500 mM imidazole, 0.5 M NaCl, pH 7.5                                                                                           |
| System:                   | ÄKTAexplorer 10                                                                                                                                |
|                           |                                                                                                                                                |




#### Fig. 14C: Pooled fraction from purification of refolded scFv 57P



## Fig. 14B: Sensogram of the interaction between immobilized peptide and refolded protein

System: Biacore™ system 2000

- Sensor surface: Immobilized peptide C16V"37" (tobacco mosaic virus) with affinity to scFv57P
- Blank surface: Immobilized with peptide with no affinity to scFv57P Yield: 14% active protein from pooled fraction



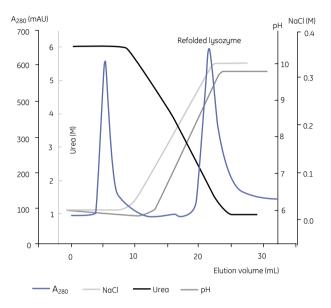
#### Conclusions

- Refolding yield was 14% from the purified refolded peak
- Refolding parameters of a histidine-tagged protein could be optimized simply and the final method automated for both refolding and purification with HisTrap HP

#### About HisTrap HP

Ni Sepharose HP prepacked in convenient HisTrap columns for purification of histidine-tagged proteins. It offers:

- High binding capacity, at least 40 mg/ml medium
- Compatible with different additives, reducing agents, denaturing agents, and detergents
- Negligible Ni leakage.
- Simple operation with a syringe, pump, or high performance chromatography system, such as ÄKTAdesign


## One-step on-column refolding and purification using a dual gradient

#### Fig. 15: Example of a dual-gradient ion-exchange refolding procedure.

| Sample:                  | 8 mg lysozyme dissolved in denaturing buffer                                                                                                  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Column:                  | HiTrap SP HP 5 ml                                                                                                                             |
| Denaturing buffer:       | 50 mM Tris-HCl, 6 M urea, 3 mM GSH and 3 mM GSSG<br>(redox ratio 1:1), pH 6.2                                                                 |
| Refolding buffer:        | 100 mM Tris-HCl, 1 ml M urea, 0.3 M NaCl, 3 mM GSH and<br>3 mM GSSG (redox ratio 1:1), pH 10.0                                                |
| Refolding dual gradient: | linear from denaturing- to refolding conditions in 5 ml gradient volume. pH changed from 6.2 to 10 in the refolding gradient at the same time |

0.4 ml/min

Flow rate:



#### Conclusion

- Combining gradient with descending urea concentration gradient and ascending pH gradient gave higher recovery and activity of lysozyme using HiTrap SP Sepharose HP (8)
- Recovery of activity and mass of refolded protein were higher than in processes without gradient, or with only one gradient, for the refolding of denatured lysozyme (not shown)

#### About HiTrap SP Sepharose HP

SP Sepharose HP ion exchange media expertly prepacked in HiTrap columns for high resolution purification. It offers:

- $\bullet\,$  Small particle size (34  $\mu m$ ) of the medium allows fast adsorption and desorption even at high sample loadings and flow rates
- High loading capacity over broad pH range
- Convenient format for fast, simple separations either alone or connected in series

## Representative chromatographic refolding processes

There is no single refolding technique or method that satisfies all protein refolding requirements. Chemical conditions also vary from protein to protein. Several experiments are required to identify the optimal refolding process. Chromatographic refolding processes (see table below) have demonstrated their advantages for different proteins, denatured native proteins or polypeptides expressed as inclusion bodies (8)

| Refolding mode                                   | Chromatography mode     | Elution mode                                                     | Protein                                                    | Recovery (%)       | Reference              |
|--------------------------------------------------|-------------------------|------------------------------------------------------------------|------------------------------------------------------------|--------------------|------------------------|
| Solvent-exchange by GF                           | Normal gel filtration   | Normal GF                                                        | RETS-1 isoform PDGF                                        | 75<br>75           | [6]<br>[7]             |
|                                                  | Gradient gel filtration | No gradient<br>Urea gradient<br>Urea and pH gradients            | ScFv                                                       | 14.5<br>17.3<br>25 | [8]                    |
| Solvent exchange during<br>reversible adsorption | IEX                     | Three-buffer system<br>Dual-gradient system                      | Some inclusion bodies<br>Human lysozyme SOD                | ND<br>50<br>40     | [9-11]<br>[12]<br>[13] |
|                                                  | IMAC<br>HIC<br>RPC      | Three-buffer system<br>Normal HIC<br>Normal RPC                  | Histidine-TNF<br>Human interferon-α<br>Human interleukin-2 | 90<br>ND<br>ND     | [14]<br>[15]<br>[16]   |
| Use of an immobilized<br>folding catalyst        | GroEL, GroES            | Mixture of denatured<br>protein and medium                       | Lysozyme                                                   | 85                 | [17, 18]               |
| 5 5                                              | Liposomes<br>PEG        | Normal chromatographic elution<br>Normal chromatographic elution | Lysozyme<br>Lysozyme                                       | 90<br>90           | [19, 20]<br>[21]       |

ND: not determined; IEX: Ion Exchange chromatography; GF: Gel Filtration; IMAC: Immobilized Metal Affinity Chromatography

HIC: Hydrophobic Interaction Chromatography; RPC: Reversed Phase Chromatography; PEG: Polyethylene glycol

## On-column refolding products

|                  | Quantity    | Code no.   |
|------------------|-------------|------------|
| HisTrap HP       | 5 × 1ml     | 17-5247-01 |
| HisTrap HP       | 100 × 1 ml* | 17-5247-05 |
| HisTrap HP       | 1 × 5 ml    | 17-5248-01 |
| HisTrap HP       | 5 × 5 ml    | 17-5248-02 |
| HisTrap HP       | 100 × 5 ml* | 17-5248-05 |
| HiTrap SP HP     | 5 × 1ml     | 17-1151-01 |
| HiTrap SP HP     | 5 × 5ml     | 17-1152-01 |
| HiTrap Q HP      | 5 × 1ml     | 17-1153-01 |
| HiTrap Q HP      | 5 × 5 ml    | 17-1154-01 |
| HiTrap Phenyl HP | 5 × 1 ml    | 17-1351-01 |
| HiTrap Phenyl HP | 5 × 5 ml    | 17-5195-01 |
| RESOURCE ETH     | 1×1ml       | 17-1184-01 |
| RESOURCE ISO     | 1×1ml       | 17-1185-01 |
| RESOURCE PHE     | 1×1ml       | 17-1186-01 |
| RESOURCE RPC     | 1 ml        | 17-1182-01 |
| HisTrap HP kit   | 1           | 17-5249-01 |



HiTrap SP Sepharose HP



HisTrap HP kit

## On-column refolding gel filtration products

| Prepact columns                      | Quantity | Code no.   |
|--------------------------------------|----------|------------|
| Superdex 75 HR 10/30                 | 1        | 17-1047-01 |
| Superdex 200 HR 10/30                | 1        | 17-1088-01 |
| HiLoad 16/60 Superdex 30 prep grade  | 1        | 17-1139-01 |
| HiLoad 26/60 Superdex 30 prep grade  | 1        | 17-1140-01 |
| HiLoad 16/60 Superdex 75 prep grade  | 1        | 17-1068-01 |
| HiLoad 26/60 Superdex 75 prep grade  | 1        | 17-1170-01 |
| HiLoad 16/60 Superdex 200 prep grade | 1        | 17-1069-01 |
| HiLoad 26/60 Superdex 200 prep grade | 1        | 17-1171-01 |



ÄKTAexplorer

## Automated chromatography system(s) cited

| System          | Quantity | Code no.   |
|-----------------|----------|------------|
| ÄKTAexplorer 10 | 1        | 18-1300-00 |

\* special pack size delivered to customer order

## Sample preparation

### About sample preparation

Sample preparation encompasses a very wide variety of applications. For proteome analysis of human serum, many researchers are studying low abundance proteins. One of their primary goals is to find useful biomarkers for different diseases and conditions. Mass spectrometry (MS) analysis is a very important tool for protein analysis. Certain molecules degrade proteins in cell culture supernatants, bacterial lysate or serum.

#### Challenges

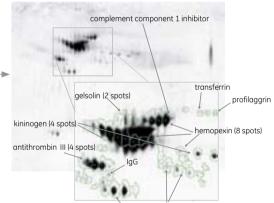

High abundance proteins, such as albumin and immunoglobulins, make it difficult to detect low abundance proteins. Proteases included in human plasma can damage the sample if not removed. MS analysis can not be performed when certain buffer salts are present in the solution.

#### Solutions

- Removal of high abundance proteins can be performed with HiTrap Blue HP columns
- HiTrap Benzamidine FF (high sub.) for removal of trypsin-like serum proteases from human plasma
- Desalting using Sephadex<sup>™</sup> is very useful for removing buffer salts prior to purification steps and MS analysis
- Membrane purification utilizing cross-flow filtration for buffer exchange is ideal for larger volumes



## Removal of high abundance proteins from human serum




#### **Conclusions**

- Protein concentrations in plasma range from low femtomolar or less and up to millimolar, making analysis of the low abundance proteins extremely challenging
- Chromatographic prefractionation of plasma improves the ability to detect and identify low-abundance proteins in twodimensional gel electrophoresis and/or liquid chromatography analysis of plasma, followed by MS analysis
- A rapid, simple and semi-automated chromatographic method to fractionate plasma proteins
- The identification of a number of selected proteins is illustrated here, demonstrating the method's simplicity and robustness

#### **About HiTrap Blue HP**

- HiTrap Blue HP is prepacked with Blue Sepharose HP, with the ligand Cibacron™ Blue F3G-A
- Its ligand is covalently attached to the highly cross-linked agarose medium and is stable over a wide pH range
- For purifying albumin, enzymes, coagulation factors, interferons, and related proteins



fibrinogen beta (3 spots) fibrinogen beta (5 spots)

apolipo protein A-IV

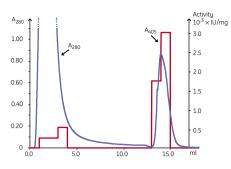
haptoglobin (4 spots)

helicase -like protein NHL isoform b

IgA (3 spots)

Ig kappa (3 spots)

serum albumin (8 spots)


macroglobulin alpha-2 (3 spots)

## Removal of trypsin-like serine proteases from human plasma

| Fig 17: Removal of trypsin-like serine proteases |                                                          |  |
|--------------------------------------------------|----------------------------------------------------------|--|
| Sample:                                          | 1 ml human plasma filtered through a 0.45 $\mu m$ filter |  |
| Column:                                          | HiTrap Benzamidine FF (high sub), 1 ml                   |  |
| Binding buffer:                                  | 20 mM Tris-HCl, 0.5 M NaCl, pH 7.4                       |  |
| Elution buffer:                                  | 50 mM glycine, pH 3.0 0-100%                             |  |
| Gradient:                                        | elution buffer in one step                               |  |
| Flow rate:                                       | 1.0 ml/min                                               |  |
| System:                                          | ÄKTAexplorer 10                                          |  |
|                                                  |                                                          |  |

#### Conclusions

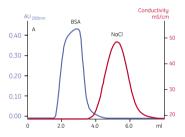
- Proteases included in human plasma can damage the sample if not removed
- Almost all trypsin-like serine protease activity was removed from the human plasma sample and bound to the column

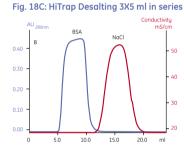


#### About HiTrap Benzamidine FF (high sub)

- For removal and/or purification serine proteases in one step
- High binding capacity
- Effective removal of thrombin and factor Xa after tag cleavage of recombinant proteins

## Small scale-up using buffer exchange

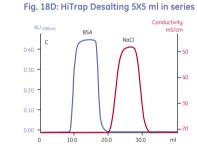

Fig 18A: Five HiTrap Desalting columns connected in series


 Sample:
 2 mg/ml BSA in 50 mM sodium phosphate, 0.5 M sodium chloride, pH 7.0

 Sample vol.:
 28% of column volume (1.4, 4.3 and 7.1 ml respectively)

 Flow rate:
 5 ml/min

Fig. 18B: HiTrap Desalting 1X5 ml in series






 Column:
 HiTrap Desalting, 1 × 5 ml, 3 × 5 ml, 5 × 5 ml

 Buffer:
 50 mM sodium phosphate, 0.15 M sodium chloride, pH 7.0

 System:
 ÄKTAFPLC



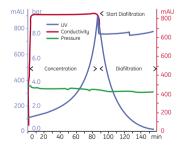
#### Conclusions

Fig. 18B–D shows results using HiTrap Desalting columns from sample volumes of 1.4, 4.3 and 7.1 mL. Connect HiTrap Desalting columns in series for fast and simple scale-up.

#### About HiTrap Desalting and HiPrep Desalting

HiTrap Desalting and HiPrep Desalting are prepacked with Sephadex G-25 Superfine for fast, simple desalting and buffer exchange. Using four HiPrep 26/10 Desalting in series yields 60 ml of sample in a very short time.

## Desalting using cross-flow filtration for 100-300 ml sample volumes


Fig 19: Desalting of 100 ml using cross-flow filtration

| Sample:                                                   |
|-----------------------------------------------------------|
| Diafiltration buffer:<br>Filtration module:<br>Flow Rate: |
| System:                                                   |

100 ml protein solution (1 mg/ml) in 2 M NaCl Water MidGee™ UFP-3-C-MM06A (Filtration area 26 cm²) 30 ml/min ÄKTAprime

#### Conclusions

- Desalting of 100 ml protein solution using cross-flow filtration reduced the salt concentration from 125 mS/cm to 2 mS/cm and the sample was concentrated by a factor of ten
- Cross-flow filtration is a simple purification technique for buffer exchange and desalting



### Desalting using cross-flow filtration cartridges

Cross-flow filtration is performed on a MidGee UFP-3-C-MM06A cartridge connected to ÄKTAprime chromatography system.

- Ideal for processing 100-300 ml of feedstock
- Reusable filters deliver reproducible results

## Removal of high abundance proteins

| Prepacked columns   | Quantity | Code no.   |
|---------------------|----------|------------|
| HiTrap Blue HP      | 1 × 5 ml | 17-0413-01 |
| HiTrap Blue HP      | 5 × 1 ml | 17-0412-01 |
| RESOURCE Q          | 1 × 6 ml | 17-1179-01 |
| RESOURCE Q          | 1×1ml    | 17-1177-01 |
| HiTrap Protein G HP | 2 × 1 ml | 17-0404-03 |
| HiTrap Protein G HP | 1 × 5 ml | 17-0405-01 |
| HiTrap Protein G HP | 5 × 1 ml | 17-0404-01 |



HiTrap Blue

### Removal of trypsin-like serine proteases

| Prepacked columns          | Quantity | Code no.   |
|----------------------------|----------|------------|
| HiTrap Benzamidine FF      | 2 × 1 ml | 17-5143-02 |
| HiTrap Benzamidine FF      | 5 × 1 ml | 17-5143-01 |
| HiTrap Benzamidine FF      | 1 × 5 ml | 17-5144-01 |
| Benzamidine Sepharose 4 FF | 25 ml    | 17-5123-10 |

## Desalting and scale up for buffer exchange

| Prepacked columns      | Quantity  | Code no.   |
|------------------------|-----------|------------|
| HiTrap Desalting       | 5 × 5 ml  | 17-1408-01 |
| HiPrep 26/10 Desalting | 1 (53 ml) | 17-5087-01 |

### Desalting using cross-flow filtration

| Membrane filters       | Cut-off | Code no.   |
|------------------------|---------|------------|
| MidGee UFP-3-C-MM06A   | 3 kD    | 56-4100-05 |
| MidGee UFP-10-C-MM06A  | 10 kD   | 56-4100-13 |
| MidGee UFP-30-C-MM06A  | 30 kD   | 56-4100-21 |
| MidGee UFP-50-C-MM06A  | 50 kD   | 56-4100-29 |
| MidGee UFP-100-C-MM06A | 100 kD  | 56-4100-37 |

### Automated chromatography system(s) cited

| Systems and software | Quantity | Code no.   |
|----------------------|----------|------------|
| ÄKTAFPLC             | 1        | 18-1118-67 |
| ÄKTAprime            | 1        | 18-1139-47 |

#### **Related literature**

| Selection Guide                           |            |
|-------------------------------------------|------------|
| Affinity chromatography columns and media | 18-1121-86 |
| Gel filtration column and media           | 18-1124-19 |
| HiTrap columns                            | 18-1129-81 |
| Hollow fiber cartridges and systems       | 18-1165-29 |



HiTrap Benzamidine



MidGee cross-flow cartridge

## Chromatography systems



ÄKTAprime: simple automated purification



ÄKTAFPLC: high performance purification of proteins & other biomolecules



ÄKTApurifier: high performance purification and characterization





ÄKTAexplorer: for fast method development and scale-up

ÄKTApilot: rapid process development and pilot-scale



ÄKTAxpress: for high throughput tagged protein purification

| Way of working                                                         | ÄKTAprime | ÄKTAFPLC | ÄKTApurifier | ÄKTAexplorer | ÄKTApilot | ÄKTAxpress |
|------------------------------------------------------------------------|-----------|----------|--------------|--------------|-----------|------------|
| Simple, one-step purification                                          | •         | •        | •            | •            | •         |            |
| Reproducible performance for routine purification                      | •         | •        | •            | •            | •         | •          |
| Optimization of one-step purification to increase purity               | •         | •        | •            | •            | •         |            |
| System control and data handling for regulatory requirements, e.g. GLP |           | •        | •            | •            | •         |            |
| Automatic method development and optimization                          |           |          | •            | •            | •         |            |
| Automatic buffer preparation                                           |           |          | •            | •            |           |            |
| Automatic pH scouting                                                  |           |          | •            | •            |           |            |
| Automatic media or column scouting                                     |           |          |              | •            | •         |            |
| Automatic multistep purification                                       |           |          |              | •            | •         | •          |
| Method development and scale-up                                        |           |          |              | •            | •         |            |
| Sanitary design cGMP                                                   |           |          |              |              | •         |            |
| Scale-up, process development, and transfer to production              |           |          |              |              | •         |            |
| Fully-automated, high-throughput, unattended operations                |           |          |              |              |           | •          |



UNICORN control system: one software delivers real-time control over all of our chromatography systems. It offers easy-to-use, editable, method wizards for all major applications and techniques. UNICORN enables direct method transfer while providing powerful data reporting and evaluation.

## Faster, simpler and more reliable purification. For >50 years.

The Protein Separations business area of GE Healthcare has over 230 R&D staff – a high proportion of whom are chemists, biochemists and engineers. Together with our sales and applications specialists they engage in close collaborations with customers and other global leaders within the life science, biotech and biopharmaceutical industries. With a 50 year proven track record of pioneering and improving most of the techniques used in protein purification, we remain committed to making your applications faster, simpler more reliable and productive. Two recent examples include:

- ÄKTAxpress purification system, which automates multistep purification on up to 48 samples and delivers up to 50 mg of >95% pure tagged proteins overnight
- Ni Sepharose HP and FF media, available in bulk as well as prepacked in HisTrap and HisPrep columns. This latter combination offers one-step simplicity and up to four times higher binding capacity for purfying histidine-tagged proteins.

#### High reproducibility. Quality control.

We have the world's largest installed capacity for production of chromatography media, with an annual production capacity of 450 000 liters and/or kilograms. Our media and columns are produced according to validated methods and are strictly quality control-tested. This ensures high batch-tobatch reproducibility of our media and prepacked columns while helping you achieve reproducible results.

#### Quality assurances.

All our products are manufactured and delivered in accordance to ISO 9001 and are backed up with technical data. Critical materials used to construct equipment (i.e. columns, systems, etc.) are tested for biological safety in accordance with relevant standards. We offer full tracability of all material sources. Plus, we invest in media characterization technologies that prove our media meet their specifications and thereby offer you total reassurance.



## Ready to support your research

Your local Protein Separations specialists offer you powerful resources. In fact, every minute of every working day they help customers solve purification challenges. Our sales professionals are always available to assist you. You can contact our technical support scientists either online or over the phone. Our distribution professionals as well as our inventory management systems and procedures ensure timely deliveries. Our service professionals provide standard and customized agreements to support equipment and process uptime.

#### **Scientific forums**

We establish environments for professionals to share experience and knowledge. Online, we offer education centers and users clubs. We hold or are active in thousands of face-to-face discussion forums every year.

#### **Courses and training**

Boosting the knowledge and efficiency levels of your teams offers you a lasting competitive advantage. We offer both general and customized training to address your specific needs. On average, over 450 engineers and scientists attend our Fast Trak™ courses every year.

#### **Technical support literature**

Many university departments around the world use our technique handbooks as educational supplements. We support you with technical literature, including product catalogs, scientific posters, application notes and more. These are regularly updated to reflect current developments and are available at: www.chromatography.amershambiosciences.com



#### References

1. Jeppsson, J-O. *et al.* Measurement of hemoglobin  $A_{1c}$  by a new liquid chromatographic assay: methodology, clinical utility and relation to glucose tolerance evaluated. *Clin. Chem.*; **32**, 1867-72 (1986)

2. Eckerbom, S.*et al.* Improved method for analysis of glycated hemoglobin by ion exchange chromatography. *Ann. Clin. Biochem.* **31**, 355-360 (1994).

3. Jeppsson, J-O. *et al.* Approved IFCC Reference Method for Measurement of HbA<sub>1c</sub> in Human Blood. *Clin. Chem. Lab. Med.* **40**, 78-89 (2002)

4. Hoelzel, W. *et al.* IFCC Reference system for Measurement of Hemoglobin  $A_{1c}$  in Human Blood and the National Standardization Schemes in the United States, Japan and Sweden: A Method-Comparison Study. *Clin.Chem.* **50**, 166-174 (2004)

5. Brion, Francois. *et al.* Two-step purification method of vitellogenin from three teleost fish species: rainbow trout, gudgeon and chub. *Jour. Chrom. B Biomed. Sc.i appl.*, **737 (1-2)**, 3-12 (2000)

6. Amons, R. and Schrier, P.I. Removal of sodium dodecyl sulfate from proteins and peptides by gel filtration, *Anal. Biochem.* **116**, 439–443 (1981)

7. Hamaker, K.H., Liu, J., Seely, R.J., Ladisch, C.M., and Ladisch, M.R. Chromatography for rapid buffer exchange and refolding of secretory leukocyte protease inhibitor, *Biotechnol. Prog.* **12**, 184–189, (1996)

8. Gu, Z., Weidenhaupt, M., Ivanova, N., Pavlov, M., Xu, B., Su, Z., Janson, J.-C. Chromatographic methods for the isolation and refolding of proteins from *E. coli* inclusion bodies, *Protein Expr. Purif.* **25**, 174–179, (2002)

9. Mozhaev, V.V., Martinek, K., Berezin, I.V. Effect of immobilization on protein (trypsin) folding, *Mol. Biol. (Moscow)* **13**, 73–80 (1979)

10. Creighton, T.E., Folding of proteins adsorbed reversibly to ion exchange resins, D.L. Oxender (Ed.), UCLA Symposia on Molecular and Cellular Biology, New Series, **39**, 249–257 (1986)

11. T.E. Creighton, A process for production of a protein, 1986, World Patent, WO 86/05809.

12. M. Li, Z. Su, Refolding human lysozyme produced as an inclusion body by urea concentration and pH gradient ion exchange chromatography, *Chromatographia*, **56** 33–38, (2002) 13. Li, M. and Su, Z. Refolding of superoxide dismutase by ionexchange chromatography, *Biotechnol. Lett.* **24** 919–923 (2002)

14. Xu, J., Zhou, Q., Ma, Z., Yu, J., Hua, M. and Ding, R. Study on construction of His6-human TNFb fusion expression plasmid and single-step purification of its product, *Pharm. Biotechnol.* **7**, 1–5, (2000)

15. Guo, L. Simultaneous purification and renaturation of recombinant human interferon alpha expressed by E. coli by highperformance hydrophobic interaction chromatography, *Chin. J. Chromatogr.* **19**, 301–303 (2001)

16. Ling, M., Xu, X., Shi, F., Zhu, Y., and Long, N. Refolding of recombinant human interleukin-2 by reverse phase high performance liquid chromatography, *Chin. J. Biotechnol.* **13**, 180–183 (1997)

17. Dong, X.-Y., Yang, H., Gan, Y.-R., Bai, S. and Sun, Y. Reactivation of denatured lysozyme with immobilized molecular chaperones GroE, *Chin. J. Biotechnol.* **16**, 169–173 (2000)

18. Altamirano, M.M., Garcia, C. Possani, L.D., and Fersht, A. Oxidative refolding chromatography: folding of the scorpion toxin Cn5, *Nature Biotechnol.* **17**,187–191 (1999)

19. Yoshimoto, M. and Kuboi, R. Oxidative refolding of denatured/ reduced lysozyme utilizing the chaperone-like function of liposomes and immobilized liposome chromatography, *Biotechnol. Progr.* **15**, 480–487, (1999)

20. Yoshimoto, M., Shimanouchi, T., Umakoshi, H., and Kuboi, R. Immobilized liposome chromatography for refolding and purification of protein, *J. Chromatogr. B* **743**, 93–99 (2000)

21. Geng, X.D. and Chang, X.Q. High performance hydrophobic interaction chromatography as a tool for protein refolding, *J. Chromatogr. A* **599**, 185–194, (1992)

#### Acknowledgements

Though too many to name here, we would like to thank the many research institutions, professors and labs as well as partners whom have donated their time, input and samples in helping us compile the applications covered in this brochure. We would also like to thank Elsevier for allowing us to re-print the articles originally published in the Journal of Chromatography B and Protein Expression and Purification.

#### For further reading

| Handbook                                                                 | Code No.   |
|--------------------------------------------------------------------------|------------|
|                                                                          | 18-1022-29 |
| Recombinant protein purification                                         | 18-1142-75 |
| GST gene fusion system                                                   | 18-1157-58 |
| Antibody purification                                                    | 18-1037-46 |
| Affinity chromatography                                                  | 18-1022-29 |
| Ion exchange chromatography and chromatofocusing                         | 18-1114-21 |
| Protein purification                                                     | 18-1132-29 |
| Hydrophobic interaction chromatography and reversed phase chromatography | 11-0012-69 |
| Gel filtration                                                           | 18-1022-18 |

www.chromatography.amershambiosciences.com

GE Healthcare Amersham Biosciences AB Björkgatan 30 SE-751 84 Uppsala Sweden ÄKTAdesign, ÄKTAexplorer, ÄKTAFPLC, ÄKTAprime, ÄKTApurifier, ÄKTAxpress, Fast Trak, FPLC, GSTPrep, GSTrap, HiLoad, HiPrep, HisPrep, HiTrap, HisTrap, MabTrap, MidGee, MiniBeads, Mini Q, Mini S, Mono Q, Mano S, PreScission, RESOURCE, Sephadex, Sepharose, SOURCE, Superdex, Superose, Tricorn, and UNICORN are trademarks of Amersham plc, a General Electric company, going to market as GE Healthcare.

© 2004 General Electric Company – All rights reserved.

Biacore is a registered trademark of Biacore AB. Cibacron is a registered trademark of Ciba Speciality Chemicals Corporation. Pefabloc is a registered trademark of Pentafam AG.

Licensing information

All materials for research use only. Not for diagnostic or therapeutic purposes. A license for commercial use of GST gene fusion vectors must be obtained from Chemicon International Incorporated, 28820 Single Oak Drive, Temecula, California 92590, USA.

Purification and preparation of fusion proteins and affinity peptides comprising at least two adjacent histidine residues may require a license under US pat 5,284,933 and US pat 5,310,663, including corresponding foreign patents (assigne: Hoffman La Roche, Inc).

Amersham Biosciences AB, a General Electric company going to market as GE Healthcare.

GE Healthcare Amersham Biosciences AB Björkgatan 30, 751 84 Uppsala, Sweden

GE Healthcare Amersham Biosciences Europe GmbH Munzinger Strasse 9, D-79111 Freiburg, Germany

GE Healthcare Amersham Biosciences UK Ltd Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK

GE Healthcare Amersham Biosciences Corp 800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Amersham Biosciences KK Sanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan

Asia Pacific Tel: +852 2811 8693 Fax: +852 2811 5251 • Australasia Tel: +61 2 9899 0999 Fax: +61 2 9899 7511 • Austria Tel: 01/57606-1619 Fax: 01/57606-1619 Fax: 01/57606-1627 • Belgium Tel: 0800 73 888 Fax: 03 272 1637 • Canada Tel: 800 463 5800 Fax: 800 567 1008 • Central, East, & South East Europe Tel: +43 1 982 3826 Fax: +43 1 985 8327 • Denmark Tel: 45 16 2400 Fax: 45 16 2424 • Finland & Baltics Tel: +558-10)9-512 39 40 Fax: +558 (0)9 512 39 439 • France Tel: 01 69 35 67 00 Fax: 01 69 41 96 77 • Germany Tel: 0761/4903-490 Fax: 0761/4903-490 Fax: 0761/4903-490 Fax: 0761/4903-490 Fax: 0761/4903-490 Fax: 0165 580 410 Fax: 02 27302 212 • Japan Tel: +81 3 5331 9336 Fax: +81 3 5331 9370 • Latin America Tel: +55 11 3933 7300 Fax: +551 1 3933 7304 • Middle East & Africa Tel: +30 210 9600 637 • Sax: 43 1 0 9600 693 • Netherlands Tel: 0165 580 410 Fax: 0165 580 401 • Norway Tel: 815 65 555 Fax: 815 65 666 • Portugal Tel: 21 417 7035 Fax: 21 417 3184 • Russia & other C.I.S. & N.I.S Tel: +7 (095) 232 0250, 956 1137 Fax: +7 (095) 230 637 • Sax: 93 594 49 55 • Sweden Tel: 018 612 1900 Fax: 018 612 1910 • Switzerland Tel: 0848 8028 12 Fax: 0848 8028 13 • UK Tel: 0800 616928 Fax: 0800 616928 Fax: 803 566 597 • Sudo 616927 • USA Tel: 800 526 5393 Fax: 87 79 25 8102



GE imagination at work