Benzonase® Nuclease

Benzonase Nuclease

Benzonase Nuclease, Purity >99%
- 10,000 U
- 70664-3

Benzonase Nuclease, Purity >90%
- 10,000 U
- 70746-3

Benzonase is a genetically engineered endonuclease from *Serratia marcescens* (1, 2). The enzyme is produced and purified from *E. coli* strain W3110, a mutant of strain K12, containing the proprietary pNUC1 production plasmid (3, 4). Structurally, the protein is a dimer of identical 245 amino acid, ~30 kDa subunits with two essential disulfide bonds (5–8). This promiscuous endonuclease attacks and degrades all forms of DNA and RNA (single stranded, double stranded, linear and circular) and is effective over a wide range of operating conditions (9). The enzyme completely digests nucleic acids to 5'-monophosphate terminated oligonucleotides 2–5 bases in length (2, 10). Although the nuclease is capable of cleavage at nearly all positions along a nucleic acid chain, sequence-dependent preferences have been demonstrated (11). The enzyme prefers GC-rich regions in dsDNA while avoiding d(A)/d(T)-tracts. Benzonase is now available from Novagen in two grades, Purity > 99% and Purity > 90%. Both preparations possess exceptionally high specific activities and are supplied free from measurable protease activities and viral contaminants. Benzonase is ideal for a wide variety of applications where complete digestion of nucleic acids is desirable.

Unit definition

One unit of Benzonase Nuclease is defined as the amount of enzyme that causes a ΔA_{260} of 1.0 in 30 min, which corresponds to complete digestion of 37 µg of DNA. Standard reaction conditions are 1 mg/ml sonicated DNA substrate in 50 mM Tris-HCl pH 8.0, 0.1 mg/ml BSA, 1 mM MgCl$_2$, incubated at 37°C; measured as perchloric acid-soluble digestion product.

Storage

Benzonase Nuclease is supplied in 50% glycerol containing 50 mM Tris-HCl pH 8.0, 0.20 mM NaCl and 2 mM MgCl$_2$. The enzyme preparation is stable for 2 years when stored at −20°C. DO NOT store at −70°C as freezing Benzonase Nuclease results in loss of activity.
Benzonase® Nuclease

Using Benzonase Nuclease

Applications

- Viscosity reduction in protein extracts
- Sample preparation for 2D gel electrophoresis
- Removal of nucleic acid contaminants from recombinant protein preparations

Notes

a) Benzonase Nuclease retains its activity under a wide range of conditions as follows.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Optimal</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(^{2+}) concentration</td>
<td>1-2 mM</td>
<td>1-10 mM</td>
</tr>
<tr>
<td>pH</td>
<td>8.0-9.0</td>
<td>6.0-10.0</td>
</tr>
<tr>
<td>Temperature</td>
<td>37°C</td>
<td>0-42°C</td>
</tr>
<tr>
<td>Dithiothreitol</td>
<td>0-100 mM</td>
<td>>100 mM</td>
</tr>
<tr>
<td>2-mercaptoethanol</td>
<td>0-100 mM</td>
<td>>100 mM</td>
</tr>
<tr>
<td>Monovalent cation concentration</td>
<td>0-20 mM</td>
<td>0-150 mM</td>
</tr>
</tbody>
</table>

b) Benzonase is inhibited (approximately 50% reduction in relative activity) by monovalent cation concentrations >50 mM, phosphate concentrations >20 mM, and by ammonium sulfate concentrations >25 mM.

c) Benzonase can be diluted for ease of handling small quantities with 50 mM Tris-HCl pH 8, 20 mM NaCl, and 2 mM MgCl\(_2\). Diluted samples can be stored at 4°C for several days without loss of activity.

d) Although Benzonase requires Mg\(^{2+}\) for activation, it does not appear to require additional Mg\(^{2+}\) under many conditions.

e) Benzonase treatment is not generally recommended for purification of proteins that must be nuclease free. However, depending on the processing methods, Benzonase may be removed during purification. Residual nuclease activity can be checked by incubation of the purified protein with RNA or DNA markers followed by gel analysis.

Examples

The following examples illustrate the use of Benzonase Nuclease, and are intended as guidelines only. Optimal conditions will vary from application to application, depending on buffer compositions, sample properties and reaction conditions.

Viscosity reduction in *E. coli* lysates

7.5 g of *E. coli* W 3110 (wet weight) were resuspended in 15 ml of 10 mM Tris-HCl pH 9.0, 1 mM EDTA. MgCl\(_2\) was added to a final concentration of 6 mM. 5 ml aliquots were taken from the suspension, and Benzonase Nuclease Purity > 90% was added at increasing concentrations.

The aliquots were passed through a French press at 10,000 psi and immediately placed at 0°C. Viscosity was judged at various time intervals by dripping from a pipet tip.

<table>
<thead>
<tr>
<th>Benzonase Nuclease concentration</th>
<th>Incubation time to obtain “aqueous” drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.24 U/ml</td>
<td>> 60 min</td>
</tr>
<tr>
<td>2.40 U/ml</td>
<td>15 min</td>
</tr>
<tr>
<td>8.0 U/ml</td>
<td>5 min</td>
</tr>
<tr>
<td>24.0 U/ml</td>
<td>1.25 min</td>
</tr>
</tbody>
</table>

Use in conjunction with BugBuster™ Protein Extraction Reagent

Benzonase Nuclease is ideal for use in combination with BugBuster reagent for rapid, convenient preparation of soluble protein extracts of *E. coli*. Whereas BugBuster alone causes efficient lysis,
Benzonase® Nuclease

Extracts can be viscous due to high molecular weight genomic DNA and other nucleic acids. The addition of 25 U/ml Benzonase Nuclease to the BugBuster extraction mix greatly reduces the viscosity of the extract during a 20 minute incubation at room temperature. No additives are required; Benzonase remains fully active in 1X BugBuster reagent for weeks at 4°C (unpublished results). Benzonase-treated extracts produce excellent flow rates on chromatography columns, and purification runs can be performed in much less time vs. untreated extracts.

Removal of nucleic acids

A solution of herring sperm DNA was made in 50 mM Tris-HCl pH 8.0, 1 mM MgCl₂, 0.1 mg/ml BSA. Samples were treated with various concentrations of Benzonase Nuclease at 0°C, 23°C or 37°C. At increasing time intervals, 10 µl aliquots (initially containing 500 ng DNA) were removed and applied to nitrocellulose membrane. The blot was probed with ³²P-labeled herring sperm DNA under low stringency hybridization and washing conditions to optimize detection of repetitive sequences in the herring sperm DNA. DNA standards from 100 ng down to 10 pg allowed semiquantitative evaluation of residual hybridizable DNA.

Residual hybridizable DNA (in ng) after increasing incubation time

<table>
<thead>
<tr>
<th>Benzonase Nuclease concentration</th>
<th>0 h</th>
<th>4 h</th>
<th>6 h</th>
<th>22 h</th>
<th>30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 U/ml</td>
<td>500 ng</td>
<td>0.2</td>
<td>0.02</td>
<td>none*</td>
<td>none*</td>
</tr>
<tr>
<td>9 U/ml</td>
<td>500</td>
<td>5</td>
<td>2</td>
<td>0.3</td>
<td>none*</td>
</tr>
</tbody>
</table>

*not detectable after 30 h exposure

Residual hybridizable DNA (in ng) after increasing incubation time with 90 U/ml

<table>
<thead>
<tr>
<th>Incubation temperature</th>
<th>0 h</th>
<th>4 h</th>
<th>6 h</th>
<th>22 h</th>
<th>30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>500 ng</td>
<td>0.20</td>
<td>0.02</td>
<td>none*</td>
<td>none*</td>
</tr>
<tr>
<td>23°C</td>
<td>500</td>
<td>0.5</td>
<td>0.100</td>
<td>0.01</td>
<td>none*</td>
</tr>
<tr>
<td>0°C</td>
<td>500</td>
<td>1</td>
<td>0.500</td>
<td>0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*not detectable after 30 h exposure

Residual hybridizable DNA (in ng) after increasing incubation time with 90 U/ml

<table>
<thead>
<tr>
<th>Buffer</th>
<th>0 h</th>
<th>4 h</th>
<th>6 h</th>
<th>22 h</th>
<th>30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris buffer (23°C)</td>
<td>500 ng</td>
<td>0.5</td>
<td>0.1</td>
<td>none*</td>
<td>none*</td>
</tr>
<tr>
<td>PBS buffer (23°C)</td>
<td>500</td>
<td>5</td>
<td>1</td>
<td>0.50</td>
<td>0.3</td>
</tr>
</tbody>
</table>

*not detectable after 30 h exposure

Related Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Size</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BugBuster™ Protein Extraction Reagent</td>
<td>100 ml</td>
<td>70584-3</td>
</tr>
<tr>
<td></td>
<td>500 ml</td>
<td>70584-4</td>
</tr>
<tr>
<td>BugBuster Plus Benzonase</td>
<td>500 ml plus 10,000 U</td>
<td>70750-3</td>
</tr>
</tbody>
</table>

References