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The soluble expression of heterologous proteins in Escherichia

coli remains a serious bottleneck in protein production.

Although alteration of expression conditions can sometimes

solve the problem, the best available tools to date have been

fusion tags that enhance the solubility of expressed proteins.

However, a systematic analysis of the utility of these solubility

fusions has been difficult, and it appears that many proteins

react differently to the presence of different solubility tags. The

advent of high-throughput structural genomics programs and

advances in cloning and expression technology afford us a new

way to compare the effectiveness of solubility tags. This data

should allow us to better predict the effectiveness of tags

currently in use, and might also provide the information needed

to identify new fusion tags.
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Introduction
Production of proteins, whether for biochemical analysis,

therapeutics or structural studies, requires the success of

three individual factors: expression, solubility and pur-

ification. Although protein expression is no longer con-

sidered a major limiting step and protein purification

techniques have improved dramatically in the past dec-

ade, the problem of producing soluble proteins for pur-

ification has continued to be a major bottleneck in the

field. As the number of high-throughput structural geno-

mics projects increases, the reported percentages of solu-

ble heterologous proteins expressed in Escherichia coli has

continued to decrease; recent reports cite numbers ran-

ging from 13% to 23% [1,2]. In addition, many of the most

biochemically interesting families of proteins, including

kinases, phosphatases, membrane-associated proteins

and many other enzymes, are extremely difficult to pro-

duce as soluble proteins in E. coli. Although the reason

why it is difficult to express soluble mammalian proteins
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is unknown, two factors that might contribute are the rate

of translation and the rate of protein folding, which are

almost an order of magnitude faster in E. coli as compared

with eukaryotic systems [3]. Although eukaryotic expres-

sion hosts are sometimes able to overcome these pro-

blems, they are not without their own difficulties in terms

of ease of use, time, cost and experimental flexibility.

These problems in protein production have led to sig-

nificant research into ways of enhancing the production of

soluble proteins using currently available expression

hosts. Although some efforts have been directed towards

finding alternate expression conditions that can assist in

making proteins soluble, the majority of the work in the

field has focused on the discovery, development and

refinement of solubility fusion tags. As the name implies,

these tags are proteins or peptides that are fused to the

protein of interest and, in the best case, help to properly

fold their partners leading to enhanced solubility in the

protein of interest (Figure 1). The concept of solubility

fusions is not a new one, but advances in high-throughput

cloning and expression methods have given us more

power to test the function of these fusion tags and to

attempt to make generalizations about their utility.

Unfortunately, the addition of fusion tags brings with it

a new set of problems, including issues surrounding the

ultimate removal of these tags and the question as to

whether the proteins made in this way retain their native

structure and activity. In this review the benefits and

some of the problems of using fusion tags for the soluble

expression of proteins are discussed.

Expression hosts and conditions
Although a number of expression hosts are available for

protein production, the standard in the field still remains

E. coli [4,5]. Considerable effort is currently underway to

make alternative hosts more accessible and affordable,

and eukaryotic systems including mammalian, yeast and

insect cell expression are becoming easier to use and less

expensive [6–9]. Cell-free protein synthesis also has great

potential for overcoming some of the problems of soluble

protein expression, but remains a work in progress for the

time being [10,11]. In the end, E. coli has significant

benefits of cost, ease of use and scale, all of which make

it essential to find ways to overcome the difficulty of

generating soluble heterologous proteins in E. coli.

Improving the solubility of recombinant proteins in E. coli
commonly involves changing some of the expression con-

ditions. Factors such as reduced temperature [12], changes

in the E. coli expression strain [13], different promoters or
Current Opinion in Biotechnology 2006, 17:353–358
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Figure 1

Schematic representation of the pathway from protein expression to purification using solubility tags. Four arbitrary tagged versions of the

protein of interest are generated in E. coli. (a) After expression, some fusions will remain in the insoluble fraction and be lost from the pathway.

(b) Soluble fusions are purified by IMAC (immobilized metal affinity chromatography) using the attached His6 tag. A protease is then used to

cleave the fusion tag from the partner protein. (c) Some fusions will not cleave efficiently, and will leave behind a mixture of cleaved and

uncleaved proteins that cannot be easily separated. (d) Other fusions will cleave efficiently, but when separated from the solubility tag the

partner protein will become insoluble and precipitate. (e) However, a well-behaved fusion will remain in solution and can be purified by a second

IMAC step to remove the His6-tagged solubility tag and protease, leaving only the target protein in the flow through (IMAC FT).
induction conditions [14], and co-expression of molecular

chaperones and folding modulators [15] have all been

examined and in some specific cases lead to enhancements

of soluble protein production. In particular, lower expres-

sion temperatures routinely improve the solubility of E.
coli-expressed proteins; however, the improvements can

be minimal and many proteins will remain insoluble or

behave poorly even under these conditions [16��]. In many

cases, none of these factors will solve the problem and

proteins will be expressed in insoluble inclusion bodies

when overproduced in E. coli [17].
Current Opinion in Biotechnology 2006, 17:353–358
Solubility-enhancing fusion tags
It was discovered many years ago that some affinity tags

were able to enhance the solubility of some of the partner

proteins to which they were attached [18,19]. None of

these tags worked universally with every partner protein,

however, and the hope for a ‘magic bullet’ to solve the

solubility problem continued. Although this entity has yet

to be discovered, the repertoire of fusion partners has

increased steadily over the years. Coupled with advances

in high-throughput cloning and expression, these fusion

partners have increased our ability to find conditions for
www.sciencedirect.com
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Table 1

Some commonly used solubility-enhancing fusion partners

Tag Protein Source organism References

MBP Maltose-binding protein Escherichia coli [39�,40]

GST Glutathione-S-transferase Schistosoma japonicum [19]

Trx Thioredoxin Escherichia coli [41]

NusA N-Utilization substance Escherichia coli [42]

SUMO Small ubiquitin-modifier Homo sapiens [2]

SET Solubility-enhancing tag Synthetic [29]

DsbC Disulfide bond C Escherichia coli [43]

Skp Seventeen kilodalton protein Escherichia coli [28]

T7PK Phage T7 protein kinase Bacteriophage T7 [28]

GB1 Protein G B1 domain Streptococcus sp. [30]

ZZ Protein A IgG ZZ repeat domain Staphylococcus aureus [32]
soluble protein expression. Today, there are a number of

common solubility-enhancing fusion tags that are used to

express proteins in E. coli (Table 1). In some cases, these

tags double as affinity tags, not only facilitating soluble

expression but also increasing the efficiency of protein

purification. In other cases, these solubility tags have

been combined with a simple hexahistidine (His6) tag,

allowing the fusion partner to maintain its solublizing

functionality and also double as an affinity tag. Additional

affinity tags that can be combined with many of these

solubility-enhancing tags are also available and have been

successfully used to produce purified proteins (Table 2).

Recombinational cloning has led to a major advancement

in the field of soluble protein expression. In the past,

cloning a gene into multiple vectors with different tags

was a laborious process involving repeated PCR amplifi-

cation, ligation and sequencing. Modern cloning technol-

ogy has made parallel cloning into multiple vectors with

different tags a routine matter, with the ability to make

and compare 8 or 16 different solubility-tagged protein

expression vectors in a single experiment [16��,20��].
Coupled with the ease of generating new expression

vectors using these systems [20��,21��], we now have

the tools to study solubility tags on a side-by-side basis

and in a high-throughput manner, alleviating the problem

of focusing on a single protein or small family of proteins

and allowing us to draw global conclusions about the

utility of given tags.
Table 2

Some commonly used affinity purification tags

Tag Protein

His6 Hexahistidine tag

GST Glutathione S-transferase

MBP Maltose-binding protein

FLAG FLAG tag peptide

BAP Biotin acceptor peptide

Strep-II Streptavidin-binding peptide

CBP Calmodulin-binding peptide

www.sciencedirect.com
Although, as Table 1 shows, there are numerous solubility

tags reported in the literature, the majority of recent work

has continued to focus on a few major players, notably

maltose-binding protein (MBP), N-utilization substance

A (NusA), thioredoxin (Trx), and glutathione-S-transfer-

ase (GST). Both MBP and GST have an additional

benefit in that they can function as affinity tags; MBP

binds strongly to amylose resin [22], whereas GST binds

to glutathione resin [23]. In E. coli, however, the over-

whelming evidence has shown that GST is, at best, a poor

solubility enhancer [12,20��]. This has left MBP as one of

the most well-studied solubility factors, and a significant

body of evidence exists to show that N-terminal MBP

fusions can frequently produce soluble proteins when the

unfused partners are insoluble [16��,20��,21��,24��]. The

E. coli NusA protein has also been shown to function at a

similar level to MBP in producing soluble partner pro-

teins, although NusA has no independent affinity func-

tionality [25�,26,27�]. E. coli thioredoxin has been

reported in several studies to be nearly as efficient as

MBP at promoting solubility [12,25�], although other

studies have shown it to be less effective [2].

Recently, new solubility tags have begun to appear in the

literature, as scientists try to identify highly soluble

proteins that might be able to promote solubility in their

fusion partners. A fragment of the bacteriophage T7

protein kinase gene (T7PK) has recently been shown

to function as a solubility enhancer, and also appears to
Affinity matrix References

Metal chelates [44]

Glutathione [23]

Amylose [22]

Anti-FLAG antibody [45]

Avidin [46]

Streptavidin [47]

Calmodulin [48]
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356 Protein technologies
enhance overall levels of expression [28]. Small peptide

tags called SET tags, which feature highly acidic amino

acid sequences, have also been shown to stimulate solu-

bility in a few partner proteins [29]. If the SET tags are

shown to have a more universal effect, they could be

highly valued as their small size (<30 amino acids) might

lead to less folding interference and make them more

amenable for structural studies without the need to

remove the tag. Similarly, two other small protein tags,

GB1 and ZZ, have been used with some success to

enhance the expression and solubility of peptides and

small proteins [30–32]. Another potentially promising

recent development is the SUMO tag, a ubiquitin-related

protein that has been reported to enhance solubility and

in some cases appears to be as effective as MBP [2].

Currently, many of these tags suffer from the same

problem — they do not function equally well with all

partner proteins. Although many studies have demon-

strated that a particular tag is better at solublizing a given

partner protein or small set of proteins, the large-scale

analysis of hundreds of proteins with tens of tags remains

to be accomplished. Recent studies have begun to look at

larger numbers of target proteins, and the types of target

proteins being analyzed are becoming more diverse as

well [20��,25�]. But, the contradictory data observed for

many of these tags simply highlights both the difficulty in

sample size and the true complexity of proteins — every

protein is different, and its reaction to various solubility

tags could very well also be different. We must look to

high-throughput analyses and proteomics technologies

for the larger-scale comparisons that are necessary to

validate new solubility tags. One such technology is

POET, a high-throughput proteomics approach that

should be useful for comparing the solubility-enhancing

power of multiple tags on large pools of proteins [33].

Data from high-throughput structural genomics centers

could also help clarify which tags have a more generic

function across a wider variety of targets from different

hosts or different classes of proteins [1,16��,20��].

The removal of fusion tags
The ability of solubility fusion tags to produce soluble

protein is only the first step in the pathway towards
Table 3

Some proteases commonly used to remove fusion tags

Protease Source

TEV Tobacco etch virus protease

3C Human rhinovirus 3C protein

Xa Factor Xa

EntK Enterokinase

Thr Thrombin

Caspase Caspase-3

a The ‘/’ indicates the site of protease cleavage.
b The cleavage site is given in single-letter amino acid code, where X indi
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protein production. As many of these tags are large

proteins, it is often necessary to remove the tags after

they have been used to make soluble fusion partners.

Although some groups have shown the possibility of

generating crystal structures of the fusion proteins [34],

biochemical studies and therapeutic proteins require the

removal of the tags and the maintenance of a stable,

soluble protein of interest. In order to achieve this, the

most common solution is to engineer a protease cleavage

site between the solubility tag and the partner protein,

permitting an in vitro reaction after purification to remove

the fusion tag. By placing an affinity tag at the N terminus

of the fusion partner, one can purify the protein, cleave

the tag, and then re-purify on the same affinity matrix to

remove the cleaved tag [35�]. This process is becoming a

very common and successful approach to making highly

purified proteins. There are numerous choices for the

protease used for this purpose (Table 3), but one of the

most commonly used is the TEV protease from tobacco

etch virus, which shows exquisitely high specificity, is

relatively easy to make in large quantities, and cleaves in

most cases to leave a native N terminus [36,37].

Unfortunately, difficulties are often encountered when

attempts are made to remove the solubility tags from

apparently soluble fusion proteins. In some cases, the

protease cleavage fails, owing perhaps to steric issues or

aggregation. Sometimes, the problem can be solved by

introducing short linkers between the protease site and

the passenger protein (D Esposito, unpublished). In other

cases, the protease cleavage is successful, but the pas-

senger protein does not remain soluble once the fusion

partner is removed. The most widely viewed hypothesis

for this result is that the seemingly soluble proteins are

actually existing as ‘soluble aggregates’, held in solution

by interactions with the solubility partner, but not in their

true, native, soluble form [35�,38]. Removal of the solu-

bility partner causes them to revert to their natural

insolubility and they precipitate. Solving this problem

is a key focus at present, as a significant number of

proteins exhibit this behavior independently of the type

of solubility tag being employed [39�]. Possible solutions

to this problem that are being investigated include the

use of additives, such as detergents or chaperones, or
Cleavage sitea,b References

ENLYFQ/X [37]

EVLFQ/GP [44]

IEGR/ [49]

DDDDK/ [50]

LVPR/GS [49]

DXXD/ [51]

cates any amino acid.
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alterations in expression conditions. So far, however, no

one method has proven widely successful.

Conclusions
Currently, the production of soluble proteins in E. coli
remains a hit-or-miss affair. Although there are clearly

some solubility tags that seem to perform, on average,

better than others, there is still no a priori guarantee that a

given tag will work with a protein of interest. It is for this

reason that an emphasis on large-scale comparisons of

protein solubility with different tags is underway. With

the increase in high-throughput cloning and expression

projects, it is likely that the next few years will give us a

better feel for the true winners among the current set of

tags. At the same time, there is a likelihood that many

other proteins might exist that can carry out similar

functions, and the expectation is that additional solubility

tags will be discovered and compared with the current set.

Overall, it remains likely that the individuality of proteins

will force scientists to keep a toolbox of solubility tags to

hand, any one of which might prove the best tool for a

given task. The advent of recombinational cloning and

high-throughput expression techniques has made this a

much easier task, and data produced over the next few

years should give us a better idea as to what tools to use in

what circumstances. Barring the discovery of the ‘magic

bullet’ tag, this is likely to be the best path forward for

soluble protein production in E. coli.
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