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Production of heterologous proteins or parts thereof in different
extra-cytoplasmic compartments (in the periplasm, outer membrane
or extracellularly) of Escherichia coli offers multiple applications, for
example, in vaccine development, immobilised enzymes and
bioremediation. Nowadays, not only surface display of short
peptides, but also cell-surface anchoring or secretion of functional
proteins is possible. Factors influencing folding, stability and export
of extra-cytoplasmic proteins are also better understood.
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Abbreviations
GPI glycosyl-phosphatidylinositol
Inp Pseudomonas syringae ice-nucleation protein
OprI Pseudomonas aeruginosa major lipoprotein

Introduction
The Gram-negative bacterium Escherichia coli remains the
most versatile host for the production of heterologous pro-
teins [1•]. Although for most applications it is desirable to
achieve maximal production within the cytoplasm, targeting
the protein to extracellular compartments may offer an
interesting alternative, especially when cytoplasmic produc-
tion results in toxicity or improper folding [1•]. Cell-surface
display, using outer membrane proteins as carriers for epi-
topes, adhesins or metal-binding motifs has been the object
of intense research during the past decade and has been
reviewed recently [2,3]. In view of the attractive applica-
tions of surface display in different areas, including vaccine
development, bioremediation and enzyme immobilisation,
it is not surprising that intensive research in this domain has
been ongoing during the past two years, leading to new and
interesting developments. The intention of this review is to
re-actualise the state of the art concerning the production of
proteins in different Gram-negative bacterial compartments.
Although Gram-positive bacteria can also be engineered to
display proteins [3], this review will be limited to Gram-neg-
ative bacteria, in particular E. coli. 

Soluble proteins: cytoplasm or periplasm?
The formation of disulfide bonds does not occur in the reduc-
ing environment of the cytoplasm because of the presence of
thioredoxins. The paradigm of this reality is the enzyme alka-
line phosphatase, which is active only in the periplasm [4]. It
therefore became an accepted fact that proteins with disulfide
bonds could only be properly folded in the periplasm. It is now
evident, however, that multiple disulfide bonds can be formed
in the E. coli cytoplasm of a trxB thioredoxin reductase mutant,

especially when the periplasmic enzyme DsbC, which cataly-
ses disulfide bond isomerisation, is engineered to be localised
in the cytoplasm and expressed [5••,6].

Progress has also been made recently to enhance the
recovery of active protein in the periplasm by growing the
cells in the presence of NaCl, sorbitol and compatible
solutes such as glycine betaine [7].

Surface display using outer-membrane structures
Porins
Figure 1 shows the different strategies that have been used
to display both short peptides and large proteins on the
surface of E. coli. The features of each system are sum-
marised in Table 1. 

Insertion of short amino-acid stretches can be achieved in
extracellular loops of outer membrane proteins such as the
maltoporin LamB [8–13], OmpS of Vibrio cholerae [14] or
OmpC of E. coli [15•]. The applications of this technique
range from the display of synthetic metal-binding motifs
[8,12,15•], metallothioneins [9–11], or sequences responsi-
ble for cell adhesion [13,14].

The major drawback of the systems based on outer mem-
brane porins is that the insertion must be in a permissive
extracellular loop, and that the number of residues that can
be inserted is rather limited (<60). One exception is the
V. cholerae OmpS porin, where the fourth loop allows the
insertion of up to 186 amino acid residues [14]. 

Fimbriae
Similarly, fimbriae and flagellin have been used to display
short peptides [2,8]. Fimbriae displaying metal-binding
motifs have been found to work very well for the seques-
tration of metals by recombinant E. coli cells [16,17••]. As
for the porins, however, this system is limited by the size
of the peptides that can be inserted (~15 residues).

Lipoproteins
Outer membrane lipoproteins are anchored in the mem-
brane only by virtue of their amino-terminal lipid tail
modification, making them interesting candidates as
amino-terminal fusion protein partners. Several lipopro-
teins from Gram-negative bacteria have been used to
produce fusion proteins associated with the outer mem-
brane. The first of such lipoprotein-based systems was the
hybrid Braun’s lipoprotein (Lpp)–OmpA protein compris-
ing the signal peptide and eight amino-acids of the major
Braun’s lipoprotein of E. coli and amino acids 46–159 of the
OmpA outer membrane protein [18]. This system has
been used recently to display metallothionein at the E. coli
surface, resulting in very low expression [10]. This system
was also used to fuse an organophosphorus hydrolase
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(OPH), resulting in surface displayed active OPH [19], and
to display conformationally constrained peptides corre-
sponding to a cystine knot of a squash-type protease
inhibitor [20]. 

The peptidoglycan-associated lipoprotein (PAL) of E. coli
has also been used as a fusion partner, but curiously, as a
carboxy-terminal partner. The translocation through the
inner membrane is achieved thanks to the presence of a
pectin lyase (PelB) signal peptide [10,21]. 

The TraT lipoprotein of E. coli, encoded by the F plasmid,
seems to be a very efficient fusion partner for the presentation
of heterologous polypeptides at the bacterial surface [22•].

OprI, the 8 kDa major outer membrane lipoprotein of
Pseudomonas aeruginosa, was found to be a versatile amino-
terminal partner for the production of large fusion proteins
that are, for the majority, cell-surface exposed [23,24]. The
OprI expression vectors could also be used to surface display
a foot and mouth disease virus epitope, not only in E. coli
but also in Salmonella [24]. We also demonstrated that OprI-
derived fusion proteins are highly immunogenic [23],

allowing antigen presentation to cytotoxic T-lymphocytes in
the context of class I molecules [25], and that they can skew
the immune system towards a T-helper 1 response
(Cote-Sierra et al., personal communication).

Glycosyl-phosphatidylinositol anchored proteins
The observation that the ice nucleation protein (Inp) from
Pseudomonas syringae is attached to the surface of the cell via a
glycosyl-phosphatidylinositol (GPI) anchor was unexpected
because only eukaryotic proteins were known to posses GPI
anchors [26]. The Inp protein was used for the first time to
display the Zymomonas mobilis levansucrase at E. coli surface
[27] to produce an immobilised enzyme. Because the central
region of the Inp is made of repeats, these can be easily
replaced. The versatility of the Inp as a carrier for surface pre-
sentation of proteins or peptides was later demonstrated in
number of applications, such as the production of cell-bound
active carboxymethylcellulase [28,29•], presentation of HIV
gp120 [30•], and hepatitis B virus surface antigen [31].

ββ-autotransporters
Another class of outer membrane-associated proteins, repre-
sented by the β-autotransporters, has a large amino-terminal
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Schematic representation of the E. coli compartments (cytoplasm, periplasm and outer membrane [OM]), and the different systems used to
localise proteins. For the surface displays, the passenger domain is shown in white. IM, inner membrane.



domain exposed at the surface. They are anchored to the
outer membrane via their carboxy-terminal domain consist-
ing of β-barrels [32]. After autoproteolytic cleavage, their
amino-terminal domain can be released into the culture
medium. The prototype of β-autotransporters, the Neisseria
gonorrheae IgA protease, has been engineered by replacing
the amino-terminal domain by the polypeptide to be trans-
ported, as exemplified by the extracellular transport of
cholera toxin B subunit [33,34]. In these reports, the authors
suggested that the passenger domain could be transported
only after the carboxy-terminal domain got inserted in the
outer membrane, which required the amino-terminal pas-
senger polypeptide to be maintained in an unfolded state in
order to be secretion-competent [33,34]. Recent results,
however, demonstrate that folding of the passenger domain
(a single-chain Fv) in the periplasm does not hinder its trans-
port, its exposure at the surface or its antigen-binding activity
[35••]. Recently, another β-autotransporter, from E. coli, the
adhesin-involved-in-diffuse-adherence (AIDA), was used to
insert and transport small T-cell epitopes and the 11.6 kDa
B subunit of the E. coli heat labile toxin (LTB) [36]. 

Secretion of heterologous proteins
The secretion of recombinant proteins, resulting in their lib-
eration in the culture medium, is often desirable for easy
recovery and purification. Of the four different secretion sys-
tems that have been described in Gram-negative bacteria
(reviewed in [37]), only type I, the Sec-independent ATP-
binding cassette (ABC)-transporter-mediated transport
system, has been readily engineered to secrete passenger

proteins. The prototype of type I secretion systems is the
hemolysin transport system, which requires a short carboxy-
terminal secretion signal, two translocators, HlyB and HlyD,
and the outer membrane protein TolC [38]. The hemolysin
secretion system can be engineered to export to the medium
passenger polypeptides, providing that they are fused with
the carboxy-terminal secretion signal of type I-secreted pro-
teins, and that the genes for the secretion apparatus are also
co-expressed [39–41].

An interesting alternative for secretion is the use of bacterial
L-forms (mutants devoid of outer membrane and murein
sacculus) in order to get products that normally are targeted
to the periplasm directly into the medium [42–44]. In this
system, polypeptides fused to a normal Sec-recognised
amino-terminal signal sequence cross the cytoplasmic mem-
brane via the Sec machinery and arrive in the extracellular
space because of the absence of periplasm. Interestingly, cor-
rect folding of the proteins released into the medium was
found to take place [43,44], probably because periplasmic
enzymes such as DsbA are also released into the medium.

Conclusions
During the past few years, much progress has been made to
improve the production of proteins in E. coli, not only in the
cytoplasm, but also in other cellular compartments. It seems
now that periplasmic expression should be limited to prod-
ucts that are toxic when present in the cytoplasm,  as proteins
with disulfide bridges can now be correctly folded in the
cytoplasm by manipulating the thioredoxin pathway [5••,6].
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Table 1

Alternative ways to express, target and fold proteins in diverse compartments in E. coli.

Cellular Type of vector Folding Size of inserted Expression Applications References
compartment peptides level

Cytoplasm Classical expression Yes, in a trxB mutant Not relevant High Production of [1•,2–4,5••,6]
vector and DsbC in trans soluble proteins

Periplasm Sec signal sequence Yes Not relevant High Production of [1•,7]
soluble proteins

Cell surface Porins Yes Up to 150 residues Fair Epitopes, metal-binding [8–14,15•]
motifs

Fimbriae Yes <50 residues Fair Epitopes, metal-binding [16,17••]
motifs

Lipoproteins Yes Large polypeptides Fair to high Immobilised enzymes, [18–21,22•,23–25]
metal-binding motifs,

subunit vaccines

GPI anchor Yes Large polypeptides Fair Immobilised enzymes, [27,28,29•,30•,31]
metal-binding motifs,

subunit vaccines

β-autotransporters Yes Large polypeptides Fair Immobilised enzymes, [32–34,35••,36]
metal-binding motifs,

subunit vaccines

Outside medium Type I secretion Not known Large polypeptides Fair Subunit vaccines [39–41]

L-forms and vectors Yes Large polypeptides Fair Single-chain antibodies [42–44]
with signal sequence



Targeting proteins to the outer membrane is now achievable
thanks to a range of different systems, including outer mem-
brane porins, lipoproteins, GPI-anchored proteins, fimbriae,
and autotransporters. These systems offer perspectives,
among others, for the development of vaccines, immobilised
enzymes, bioremediation, and metal bioabsorption. 

The ultimate destination, the extracellular space, can now
be reached by manipulating the type I Sec-independent
systems, or by the use of L-forms in a Sec-dependent
fashion. It would be interesting to investigate, in the
future, if the L-forms can target outer membrane lipopro-
teins to the medium.

One has also to look for new methods to improve the
folding, and to decrease the degradation of the compart-
ment-targeted protein. Expressing different periplasmic
chaperones, such as Skp for outer membrane proteins
[45••,46•,47] and LolA/LolB for outer membrane lipopro-
teins, can probably make this objective realisable [48•].
Another challenge is to minimise the protein degradation
in the periplasm, which will be aided by a better under-
standing of the stress-related degradation pathway of
misfolded proteins in the periplasm [49•].

Update
Since submission of this review, two important contribu-
tions in the domain of surface display were published. One
concerns the display of the metal-binding metallothionein
at the surface of the Gram-negative bacterium Ralstonia
eutropha using the Neisseria gonorrhoeae IgA protease auto-
transporter [50••], while the second one describes the
display of hepatitis B and C at the surface of Salmonella
typhi using the P. syringae Inp [51].
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